-
摘要:
针对现有大口径平面反射镜面形检测中数据处理方法存在通用性较低、检测中数据易受环境影响等问题,本文提出了一种结合光线追迹法获取灵敏度矩阵的数据处理方法,对瑞奇-康芒法检测获得的数据进行处理分析,实现了对大口径平面镜的高精度面形检测。首先,在Zemax软件中建立了瑞奇-康芒光学检测模型,并采用光线追迹算法获得了灵敏度矩阵,使用灵敏度矩阵计算并分离检测过程中存在的误差。其次,对基于灵敏度矩阵的数据处理算法进行了仿真验证。将该算法应用于口径200 mm平面镜的瑞奇-康芒法检测实验,通过与直接采用干涉仪检测结果的交叉对比,结果显示该方法相比直接采用泽尼克拟合去除像差的方法具有更高的检测精度,避免了近似拟合对数据处理结果的影响,验证了该数据处理方法的正确性。进一步将该方法应用于口径为2.2 m平面镜的制造流程中,最终获得的面形结果均方根误差优于1/50
$\lambda $ 。该方法为大口径平面镜的瑞奇-康芒检测提供了一种高效可靠的数据处理算法,具有明显的工程应用价值。Abstract:Addressing limitations in existing data processing methods for large-aperture flat mirror figure measurement – specifically low generality and susceptibility to environmental instabilities, this paper proposes a novel data processing approach. This method integrates ray tracing to generate a sensitivity matrix and applies it to process and analyze data obtained via the Ritchey-Common test. Consequently, high-precision figure detection of large-aperture flat mirrors is achieved. The investigation commences with the development of a Zemax-based Ritchey-Common optical model, from which a sensitivity matrix is rigorously derived through advanced ray tracing algorithms. This matrix enables precise separation of systematic errors inherent in the measurement process, demonstrating superior accuracy compared to conventional Zernike polynomial aberration correction methods while eliminating approximation-induced artifacts in data interpretation. Subsequent numerical verification of the sensitivity matrix algorithm confirms its theoretical validity and computational robustness. Experimental validation encompasses dual-scale implementation: Primary verification employs a 200-mm aperture test mirror, where cross-comparative analysis with direct interferometric measurements achieves sub-wavelength consistency (RMS<λ/40). Full-scale application in the manufacturing process of a 2.2-meter class planar mirror demonstrates exceptional surface figure control, attaining final surface accuracy better than λ/50 RMS. The methodology exhibits significant improvements in measurement repeatability and environmental stability. This research establishes a generalized computational framework that effectively addresses the scalability challenges in ultra-precision optical testing, providing both theoretical advancement and practical engineering solutions for next-generation large-aperture optical systems fabrication.
-
表 1 验证实验数据及处理结果(λ)
Table 1. Verify experimental data and processing results
θ1 = 41° θ2 = 45° Calculation results Residual error (1) PV= 0.2036 RMS=0.0229 PV= 0.3406 RMS=0.0259 PV= 0.4060 RMS=0.0159 PV= 0.0986 RMS=0.0067 (2) PV= 0.1878 RMS=0.0205 PV= 0.3429 RMS=0.0265 PV= 0.4700 RMS=0.0158 PV= 0.0979 RMS=0.0066 (3) PV= 0.2037 RMS=0.0201 PV= 0.3220 RMS=0.0257 PV= 0.4460 RMS=0.0160 PV= 0.0986 RMS=0.0067 表 2 平面镜面形检测结果
Table 2. Detection results of planar mirror surface shape
Ritchey angle Result 1 Result 2 Result 3 41.7° PV= 0.2374 RMS=0.0174 PV= 0.3379 RMS=0.0175 PV= 0.3337 RMS=0.0177 48.4° PV= 0.2406 RMS=0.0168 PV= 0.1929 RMS=0.0173 PV= 0.2055 RMS=0.0172 -
[1] 郭良. 基于相位差算法的高精度空间望远镜波前探测研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023.GUO L. Research on high-accuracy wavefront sensing of space telescopebased on phase diversity algorithm[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2023. (in Chinese). [2] 刘宗豪, 牛冬生, 叶宇. 可用于空间望远镜主动支撑主镜的主动减振技术研究[J]. 金宝搏188软件怎么用 与光电子学进展,2024,61(21):2122003.LIU Z H, NIU D SH, YE Y. Research on active vibration reduction technology for actively supporting main mirror of space telescope[J]. Laser & Optoelectronics Progress, 2024, 61(21): 2122003. (in Chinese). [3] 刘银年, 薛永祺. 星载高光谱成像载荷发展及关键技术[J]. 测绘学报,2023,52(7):1045-1058. doi: 10.11947/j.AGCS.2023.20220498LIU Y N, XUE Y Q. Development and key technologies of spaceborne hyperspectral imaging payload[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1045-1058. (in Chinese). doi: 10.11947/j.AGCS.2023.20220498 [4] 曾昶宇, 李金鹏, 王鑫蕊. 基于金宝搏188软件怎么用 跟踪仪的瑞奇角在位检测方法[J]. 光学学报,2024,44(12):1212002. doi: 10.3788/AOS231348ZENG CH Y, LI J P, WANG X R. Method of in-situ detection of Ritchey angle based on laser tracker[J]. Acta Optica Sinica, 2024, 44(12): 1212002. (in Chinese). doi: 10.3788/AOS231348 [5] 芮九多, 巫智勋, 邓嘉信, 等. 基于扩束动态干涉仪的晶圆抛光盘掠入射拼接面形测量方[J]. 光学学报,2025,45(2):191-202.Rui J D, Wu Z X, Deng J X, et al. Grazing Incidence Stitching Surface Measurement Method Based on Beam-Expanding Dynamic Interferometer[J]. Acta Optica Sinica, 2025, 45(2): 191-202. (in Chinese). [6] 宗毅, 孙晟遥, 史玺源, 等. 单光楔可变补偿的非球面子孔径拼接干涉测量方法[J]. 光学学报,2024,44(20):91-101.ZONG Y, Sun S Y, Shi X Y, et al. Aspheric Subaperture Stitching Interferometry with Single-Wedge Variable Compensation,[J]. Acta Optica Sinica, 2024, 44(20): 91-101. (in Chinese). [7] 林冬冬, 胡明勇, 李金鹏, 等. 大口径平面镜局部采样瑞奇-康芒检验[J]. 金宝搏188软件怎么用 与光电子学进展,2018,55(3):031202.LIN D D, HU M Y, LI J P, et al. Local sampling Ritchey-common test for large aperture flat mirror[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031202. (in Chinese). [8] 袁理, 张晓辉. 采用五棱镜扫描法检测大口径平面镜的面形[J]. 中国光学(中英文),2019,12(4):920-931.YUAN Li, ZHANG Xiao-hui. Surface shape measurement of large flat mirrors using a scanning pentaprism method[J]. Chinese Optics, 2019, 12(4): 920-931. (in Chinese). [9] 闫公敬, 罗旺, 张斌智. 椭圆形平面镜的高精度面形重构技术[J]. 中国光学(中英文),2022,15(2):318-326.YAN Gong-jing, LUO Wang, ZHANG Bin-zhi. High-precision surface reconstruction technology for elliptical flat mirrors[J]. Chinese Optics, 2022, 15(2): 318-326. (in Chinese). [10] Zhu, S, Zhang, X. Influence of reference sphere on test accuracy of Ritchey-Common method. IET Optoelectronics, 2024, 18(1-2), 1-10. [11] CHENG W M, CHEN M Y. Transformation and connection of subapertures in the multiaperture overlap-scanning technique for large optics tests[J]. Optical Engineering, 1993, 32(8): 1947-1950. doi: 10.1117/12.143720 [12] ZHANG L CH, XUAN B, XIE J J. Combination of skip-flat test with Ritchey-Common test for the large rectangular flat[J]. Proceeding of SPIE, 2010, 7656: 76564W. doi: 10.1117/12.867490 [13] 朱硕, 张晓辉. 瑞奇-康芒式大口径平面镜面形数据处理方法对比研究[J]. 应用光学,2015,36(5):698-703. doi: 10.5768/JAO201536.0501006ZHU SH, ZHANG X H. Comparative study on data processing method for large flat mirror in Ritchey-Common test[J]. Journal of Applied Optics, 2015, 36(5): 698-703. (in Chinese). doi: 10.5768/JAO201536.0501006 [14] 朱硕. 大口径光学平面镜面形检测技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014.ZHU SH. Study on technology for large optic flat mirror testing[D]. Changchun: Graduate Institute of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2014. (in Chinese). [15] 胡少杰, 王洪远, 何泽浩, 等. 近场分布式平面光源光强测试方法[J]. 光学学报,2024,44(3):0312004. doi: 10.3788/AOS231565HU SH J, WANG H Y, HE Z H, et al. Luminous Intensity of Plane Light Source Based on Near-Field Distributed Photometry[J]. Acta Optica Sinica, 2024, 44(3): 0312004. (in Chinese). doi: 10.3788/AOS231565 [16] 王鑫蕊, 杨永兴, 李启统, 曾昶宇, 李金鹏, 王赛亚, 赖新华, 赵金标. 采用单位激励与逆向复算的2 m平面镜检测技术[J]. 红外与金宝搏188软件怎么用 工程,2022,51(12):20220154.Wang X R, Yang Y X, Li Q T, et al. 2 m plane mirror measurement technology using unit excitation and reverse calculation[J]. Infrared and Laser Engineering, 2022, 51(12): 20220154. [17] 刘一鸣, 李金鹏, 陈磊, 等. 采用单位激励影响矩阵数值计算的瑞奇-康芒检测技术[J]. 光学 精密工程,2018,26(4):771-777. doi: 10.3788/OPE.20182604.0771LIU Y M, LI J P, CHEN L, et al. Ritchey-Common interferometry using unit-excitation influence matrix's numerical calculation method[J]. Optics and Precision Engineering, 2018, 26(4): 771-777. (in Chinese). doi: 10.3788/OPE.20182604.0771 [18] 袁吕军, 邢娜. 大口径光学平面瑞奇-康芒检测技术的研究[J]. 光学技术,2007,33(5):737-740,744. doi: 10.3321/j.issn:1002-1582.2007.05.009YUAN L J, XING N. Study on the Ritchey-Common interferometry for large plano optics[J]. Optical Technique, 2007, 33(5): 737-740,744. (in Chinese). doi: 10.3321/j.issn:1002-1582.2007.05.009 [19] An, Q, Zhang, J, Yang, F, Zhao, H, et al. Ritchey-Common sparse-aperture testing of the Giant Steerable Science Mirror. Applied Optics, 2018, 57(27), 7764-7769. [20] JI B, XU CH, LI B. The error analyze of testing the large aperture flat by the Ritchey-Common method[J]. Proceedings of SPIE, 2014, 9298: 92981A. [21] 刘昕, 王聪, 刘永强, 等. 大口径平面镜快速瑞奇-康芒测量法研究[J]. 应用光学,2022,43(4):707-713. doi: 10.5768/JAO202243.0403003LIU X, WANG C, LIU Y Q, et al. Rapid Ritchey-Common measurement method of large-aperture flat mirror[J]. Journal of Applied Optics, 2022, 43(4): 707-713. (in Chinese). doi: 10.5768/JAO202243.0403003 -