留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C点偶极子通过海洋湍流的演化

陈海涛 李强 高曾辉

陈海涛, 李强, 高曾辉. C点偶极子通过海洋湍流的演化[J]. 188bet网站真的吗 . doi: 10.37188/CO.2025-0107
引用本文: 陈海涛, 李强, 高曾辉. C点偶极子通过海洋湍流的演化[J]. 188bet网站真的吗 . doi: 10.37188/CO.2025-0107
CHEN Hai-tao, LI Qiang, GAO Zeng-hui. Evolution of the C-point dipole in oceanic turbulence[J]. Chinese Optics. doi: 10.37188/CO.2025-0107
Citation: CHEN Hai-tao, LI Qiang, GAO Zeng-hui. Evolution of the C-point dipole in oceanic turbulence[J]. Chinese Optics. doi: 10.37188/CO.2025-0107

C点偶极子通过海洋湍流的演化

cstr: 32171.14.CO.2025-0107
基金项目: 国家自然科学基金(61275203);四川省自然科学基金(2018JY0422)
详细信息
    作者简介:

    陈海涛(1967—),男,河南汝州人,博士,教授,主要从事金宝搏188软件怎么用 传输与控制研究。E-mail:chqcht@sina.com

    高曾辉(1965—),男,四川宜宾人,博士,教授,硕士生导师,主要从事金宝搏188软件怎么用 传输特性研究。E-mail:Gaozh66@163.com

  • 中图分类号: O436

Evolution of the C-point dipole in oceanic turbulence

Funds: Supported by the National Natural Science Foundation of China (No. 61275203), Sichuan Province Science and Technology Support Program (No. 18ZA0081)
More Information
  • 摘要:

    目的:为探究寄存于部分相干矢量光束的C点偶极子海洋湍流中演化规律,构建了C点偶极子的高斯-谢尔模涡旋(GSMV)光束,并据此对C点偶极子在海洋湍流中演化行为进行研究。方法:根据部分相干矢量光束偏振奇点概念,构造了GSMV光束,实现部分相干光束携带一对带相反拓扑电荷C点偶极子。再根据扩展惠更斯-菲涅耳原理和数学积分公式,推导出携带C点偶极子的GSMV光束通过海洋湍流的谱密度表示式。最后运用该表达式以及复斯托克斯场S12 = S1 + iS2等相位图,模拟计算并分析讨论光束传播距离z、光束初始离轴参数s与相干长度δ对C点偶极子海洋湍流中演化行为影响。结果:当GSMV光束传输时,构成偶极子的C点位置和偏振度均会变化。当参数sδz变化时,虽然有新的C点产生,也有带相反拓扑电荷的C点发生湮没,但光场中偏振奇点总的拓扑电荷保持守恒。结论:携带C点偶极子的部分相干矢量光束在海洋湍流中传输时,该光束的离轴参数、相干长度、湍流强度或传输距离对C点偶极子演化均有影响。

     

  • 图 1  GSMV光束在初始平面处 (a) S 1 = 0, S 2 = 0线;(b) S12等相位图

    Figure 1.  The curves of S1 = 0, S2 = 0 (a) and contour lines of phase of S12 (b) for the GSMV beam at the source plane

    图 4  海洋湍流中GSMV光束在不同湍流强度和相干长度情形下的 S12 相位分布。(a) T = 1.18×10−12, δxx = 0.03 mm, z = 5 m;(b) T = 1.18×10−12, δxx = 0.03 mm, z = 80 m;(c) T = 1.18×10−12, δxx = 0.15 mm, z = 5 m;(d) T = 1.18×10−12, δxx = 0.15 mm, z = 50 m;(e) T = 1.18×10−11, δxx = 0.15 mm, z = 5 m;(f) T = 1.18×10−11, δxx = 0.15 mm, z = 30 m

    Figure 4.  Contour lines of phase of S12 for GSMV beam for different values of theturbulence intensity and coherent length. (a) T = 1.18×10−12, δxx = 0.03 mm, z = 5 m; (b) T = 1.18×10−12, δxx = 0.03 mm, z = 80 m; (c) T = 1.18×10−12, δxx = 0.15 mm, z = 5 m; (d) T = 1.18×10−12, δxx = 0.15 mm, z = 50 m; (e) T = 1.18×10−11, δxx = 0.15 mm, z = 5 m; (f) T = 1.18×10−11, δxx = 0.15 mm, z = 30 m

    图 2  GSMV光束通过海洋湍流传输到不同传输距离处 S12等相位图。 (a) z = 1 m;(b) z = 4.5 m;(c) z = 7 m;(d) z = 15.5 m

    Figure 2.  Contour lines of S12 for the GSMV beam propagating in oceanic turbulence. (a) z = 1 m; (b) z = 4.5 m; (c) z = 7 m; (d) z = 15.5 m

    图 3  GSMV光束海洋湍流中不同离轴参数 sS12等相位图。 (a) s = −0.8 mm;(b) s = −0.46 mm;(c) s = −0.41 mm; (d) s = 0.41 mm; (e) s = 0.46 mm; (f) s = 0.8 mm

    Figure 3.  Contour lines of S12 for the GSMV beam with different off-axis parameter. (a) s = −0.8 mm; (b) s = −0.46 mm; (c) s = −0.41 mm; (d) s = 0.41 mm; (e) s = 0.46 mm; (f) s = 0.8 mm

    Baidu
  • [1] NYE J F, HAJNAL J V. The wave structure of monochromatic electromagnetic radiation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1987, 409(1836): 21-36.
    [2] BERRY M V, DENNIS M R. Polarization singularities in isotropic random vector waves[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457(2005): 141-155. doi: 10.1098/rspa.2000.0660
    [3] DENNIS M R, O'HOLLERAN K, PADGETT M J. Singular optics: optical vortices and polarization singularities[J]. Progress in Optics, 2009, 53: 293-363.
    [4] KOROTKOVA O, WOLF E. Generalized stokes parameters of random electromagnetic beams[J]. Optics Letters, 2005, 30(2): 198-200. doi: 10.1364/OL.30.000198
    [5] YAN H W, LÜ B D. Spectral Stokes singularities of stochastic electromagnetic beams[J]. Optics Letters, 2009, 34(13): 1933-1935. doi: 10.1364/OL.34.001933
    [6] YAN H W, LÜ B D. Propagation of spectral Stokes singularities of stochastic electromagnetic beams through atmospheric turbulence[J]. Applied Physics B, 2010, 99(4): 809-815. doi: 10.1007/s00340-009-3892-2
    [7] HUANG Y P, ZHANG B, GAO Z H, et al. Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence[J]. Optics Express, 2014, 22(15): 17723-17734. doi: 10.1364/OE.22.017723
    [8] XU J, ZHAO D M. Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence[J]. Optics & Laser Technology, 2014, 57: 189-193.
    [9] LIU D J, YIN H M, WANG G Q, et al. Propagation of partially coherent Lorentz–Gauss vortex beam through oceanic turbulence[J]. Applied Optics, 2017, 56(31): 8785-8792. doi: 10.1364/AO.56.008785
    [10] LI Y, ZHANG Y X, ZHU Y. Probability distribution of the orbital angular momentum mode of the ultrashort Laguerre-Gaussian pulsed beam propagation in oceanic turbulence[J]. Results in Physics, 2018, 11: 698-705. doi: 10.1016/j.rinp.2018.10.013
    [11] SUN CH, LV X, MA B B, et al. Statistical properties of partially coherent radially and azimuthally polarized rotating elliptical Gaussian beams in oceanic turbulence with anisotropy[J]. Optics Express, 2019, 27(8): A245-A256. doi: 10.1364/OE.27.00A245
    [12] LIU D J, WANG G Q, YIN H M, et al. Propagation properties of a partially coherent anomalous hollow vortex beam in underwater oceanic turbulence[J]. Optics Communications, 2019, 437: 346-354. doi: 10.1016/j.optcom.2019.01.006
    [13] WANG H, LI H, ZHOU Y L. Research on the influence of anisotropic ocean on the capacity of vortex Hankel–Bessel beam[J]. Optical Engineering, 2022, 61(4): 046102.
    [14] XU Y G, XU Q, LIU W L. Effect of oceanic turbulence on the propagation behavior of a radially polarized Laguerre–Gaussian Schell-model vortex beam[J]. Journal of the Optical Society of America A, 2023, 40(10): 1895-1907. doi: 10.1364/JOSAA.494951
    [15] WANG X G, CHEN M K, YUAN Q J, et al. Transmission characteristics of partially coherent pin-like optical vortex beams in oceanic turbulence[J]. Physica Scripta, 2024, 99(6): 065550. doi: 10.1088/1402-4896/ad497e
    [16] YE F, ZHANG J B, DENG D M, et al. Propagation properties of the rotating elliptical chirped Gaussian vortex beam in the oceanic turbulence[J]. Optics Communications, 2018, 426: 456-462. doi: 10.1016/j.optcom.2018.05.077
    [17] LI J H, ZENG J. Dynamic evolution of coherent vortex dipole in atmospheric turbulence[J]. Optics Communications, 2017, 383: 341-348. doi: 10.1016/j.optcom.2016.09.031
    [18] FREUND I. Polarization singularity indices in Gaussian laser beams[J]. Optics Communications, 2002, 201(4-6): 251-270. doi: 10.1016/S0030-4018(01)01725-4
    [19] FREUND I, MOKHUN A I, SOSKIN M S, et al. Stokes singularity relations[J]. Optics Letters, 2002, 27(7): 545-547. doi: 10.1364/OL.27.000545
    [20] FREUND I, SHVARTSMAN N. Wave-field phase singularities: the sign principle[J]. Physical Review A, 1994, 50(6): 5164-5172. doi: 10.1103/PhysRevA.50.5164
    [21] KOROTKOVA O, FARWELL N. Polarization changes in stochastic electromagnetic beams propagating in the oceanic turbulence[J]. Proceedings of SPIE, 2010, 7588: 75880S. doi: 10.1117/12.846740
    [22] KOROTKOVA O, FARWELL N, SHCHEPAKINA E. Light scintillation in oceanic turbulence[J]. Waves in Random and Complex Media, 2012, 22(2): 260-266. doi: 10.1080/17455030.2012.656731
    [23] GRADSHTEYN I S, RYZHIK I M. Table of Integrals, Series, and Products[M]. 7th ed. Burlington: Academic Press, 2007.
  • 加载中
图(4)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-12
  • 录用日期:  2025-10-14
  • 网络出版日期:  2025-11-11

目录

    /

    返回文章
    返回
    Baidu
    map