留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用离焦诱导的弥散圆特征进行镜面颗粒尺寸测量

路洪腾 宫平 卢鑫磊 韶莉霞 马辰昊

路洪腾, 宫平, 卢鑫磊, 韶莉霞, 马辰昊. 利用离焦诱导的弥散圆特征进行镜面颗粒尺寸测量[J]. 188bet网站真的吗 . doi: 10.37188/CO.2025-0108
引用本文: 路洪腾, 宫平, 卢鑫磊, 韶莉霞, 马辰昊. 利用离焦诱导的弥散圆特征进行镜面颗粒尺寸测量[J]. 188bet网站真的吗 . doi: 10.37188/CO.2025-0108
LU Hong-Teng, GONG Ping, LU Xin-Lei, SHAO Li-Xia, MA Chen-Hao. Using defocus-induced circle of confusion features for dust particle size measurement on mirrors[J]. Chinese Optics. doi: 10.37188/CO.2025-0108
Citation: LU Hong-Teng, GONG Ping, LU Xin-Lei, SHAO Li-Xia, MA Chen-Hao. Using defocus-induced circle of confusion features for dust particle size measurement on mirrors[J]. Chinese Optics. doi: 10.37188/CO.2025-0108

利用离焦诱导的弥散圆特征进行镜面颗粒尺寸测量

cstr: 32171.14.CO.2025-0108
基金项目: 吉林省科技发展计划项目(No. 20240404052ZP)
详细信息
    作者简介:

    路洪腾(2000—),男,山东栖霞人,硕士研究生,2023年于齐鲁工业大学获得学士学位,主要从事现代光学检测相关理论与技术研究。E-mail:315841791@qq.com

    马辰昊(1988—),女,吉林长春人,博士,副教授,硕士生导师, 2015年于长春理工大获得博士学位,主要从事现代光学测试理论技术研究。E-mail:mach@cust.edu.cn

  • 中图分类号: O436.2

Using defocus-induced circle of confusion features for dust particle size measurement on mirrors

Funds: Supported by Jilin Provincial Scientific and Technological Development Program (No. 20240404052ZP)
More Information
  • 摘要:

    光学表面颗粒污染检测是保障空间望远镜成像性能的重要措施。传统颗粒污染检测常使用暗场散射显微镜拍摄颗粒图像,再对图像中颗粒外轮廓作外接圆计算颗粒尺寸。该方法要求拍摄过程严格对焦,对不规则形状的颗粒尺寸检测结果误差较大。为了提高检测镜面上微小颗粒尺寸的精度,消除对焦不准和颗粒形状差异带来的误差。本文提出利用离焦诱导的弥散圆检测颗粒尺寸的方法。利用颗粒尺寸与颗粒散射能量的对应关系,通过离焦将颗粒的暗场散射图像变成弥散圆。最后分析颗粒离焦弥散圆特征来测量颗粒的真实尺寸。该方法可以规避颗粒形状以及系统对焦程度对检测结果的干扰。实验结果表明:利用离焦弥散圆检测颗粒尺寸的方法在不同离焦量下都有较高的检测精度,相较于传统的使用暗场散射显微镜的方法,对于不规则形状颗粒尺寸的检测误差从平均58%降低到10.3%。验证了离焦弥散圆检测颗粒尺寸方法的可行性,并可以有效提高检测不规则颗粒尺寸的精度。

     

  • 图 1  散射截面与颗粒尺寸

    Figure 1.  Scattering Cross-section and Particle Size

    图 2  双交互模型原理

    Figure 2.  double interaction model principle

    图 3  对焦下的颗粒散射(左)离焦下的散射(右)

    Figure 3.  Particle Scattering in Focus (Left); Defocused Scattering (Right)

    图 4  暗场散射离焦检测设备

    Figure 4.  Dark Field Scattering Defocus Detection System

    图 5  弥散圆识别计算

    Figure 5.  Circle of confusion identification and calculation

    图 6  不同标准微球颗粒弥散圆DN总值与离焦量关系

    Figure 6.  The relationship between the total DN value of the dispersion circle and the defocus amount for different standard microsphere particles.

    图 7  标准颗粒(5 µm/10 µm)DN总值比与曝光值关系

    Figure 7.  Relationship Between DN-Total Ratio (5-µm/10-µm) and Exposure Time for Calibrated Particles

    图 8  不同曝光值对尺寸检测结果的影响

    Figure 8.  The effect of different exposure values on size detection results.

    图 9  标准微球与不规则颗粒尺寸检测结果

    Figure 9.  Size detection results of standard microspheres versus irregular particles.

    图 10  灰尘颗粒散射实验图样

    Figure 10.  Dust Particle Scattering Experimental Pattern

    表  1  不同颗粒在不同离焦量下的DN总值差异

    Table  1.   Differences in total DN values of different particles across various defocus amounts.

    颗粒尺寸最大相对偏差变异系数
    1 μm4.6%1.93%
    5 μm2.9%1.31%
    10 μm2.5%0.98%
    15 μm2.4%0.97%
    下载: 导出CSV

    表  2  圆形与不规则颗粒检测结果

    Table  2.   Round and Irregular Particles Detection Results

    圆形颗粒不规则颗粒
    轮廓像素732430
    外接圆像素7932156
    相对误差4.2%401.4%
    下载: 导出CSV

    表  3  离焦检测与外接圆算法的误差水平

    Table  3.   Defocus Detection and Circumcircle Algorithm Error Level

    弥散圆方法误差外接圆方法误差
    18%54%
    20.5%79%
    310%40%
    420%54%
    513%67%
    平均误差水平10.3%58%
    下载: 导出CSV
    Baidu
  • [1] 周济林, 谢基伟, 葛健, 等. 空间系外行星探测与研究进展[J]. 空间科学学报, 2024, 44(1): 5-18. doi: 10.11728/cjss2024.01.2024-yg01

    ZHOU J L, XIE J W, GE J, et al. Progress on exoplanet detection and research in space[J]. Chinese Journal of Space Science, 2024, 44(1): 5-18. (in Chinese). doi: 10.11728/cjss2024.01.2024-yg01
    [2] WOOLDRIDGE E, ARENBERG J. Contamination effects and requirements derivation for the James Webb Space Telescope[J]. Proceedings of SPIE, 2008, 7069: 70690J. doi: 10.1117/12.801664
    [3] WARD J O, JONES C B, GOLDMAN E W. Precious cargo: transporting contamination-sensitive instruments and optics[J]. Proceedings of SPIE, 2022, 12224: 1222405.
    [4] VENKATA S, BUDIHAL R P. Light scattering due to particulate contamination over the primary mirror of Visible Emission Line Coronagraph on board Aditya-L1 mission[J]. Optical Engineering, 2021, 60(7): 074103.
    [5] 冷荣宽, 王上, 王智, 等. 空间引力波探测前向杂散光测量和抑制[J]. 中国光学(中英文), 2023, 16(5): 1081-1088. doi: 10.37188/CO.2022-0251

    LENG R K, WANG SH, WANG ZH, et al. Measurement and suppression of forward stray light for spaceborne gravitational wave detection[J]. Chinese Optics, 2023, 16(5): 1081-1088. (in Chinese). doi: 10.37188/CO.2022-0251
    [6] 杨星宇. 超光滑表面疵病的显微散射检测方法[D]. 南京: 南京理工大学, 2015.

    YANG X Y. Microscopic scattering detection for defects on ultra-smooth surfaces[D]. Nanjing: Nanjing University of Science and Technology, 2015. (in Chinese) .
    [7] 吴凡. 基于暗场散射的精密表面微小缺陷检测能力提升技术研究[D]. 杭州: 浙江大学, 2020.

    WU F. Detection capability improvement technology for weak defects on smooth surfaces based on dark field scattering[D]. Hangzhou: Zhejiang University, 2020. (in Chinese).
    [8] 邓泉, 赵泽宇, 林鹤, 等. 晶圆金属表面纳米颗粒暗场检测系统设计[J]. 中国金宝搏188软件怎么用 , 2023, 50(22): 2204003. doi: 10.3788/CJL230444

    DENG Q, ZHAO Z Y, LIN H, et al. System design for dark-field detection of nanoparticles on wafer metal surface[J]. Chinese Journal of Lasers, 2023, 50(22): 2204003. (in Chinese). doi: 10.3788/CJL230444
    [9] 李佳慧, 匡翠方, 徐月暑, 等. 极紫外光学元件全频段面形误差检测与缺陷探测技术研究进展[J]. 光学 精密工程, 2025, 33(17): 2661-2690.

    LI J H, KUANG C F, XU Y SH, et al. Research progress of full-spatial frequency error measurement and defect detection technology for extreme ultraviolet optical components[J]. Optics and Precision Engineering, 2025, 33(17): 2661-2690. (in Chinese).
    [10] 刘自轩. 基于机器学习的颗粒光散射信号特征提取与属性识别[D]. 西安: 西安理工大学, 2023.

    LIU Z X. Feature extraction and attribute recognition of particle light scattering signals based on machine learning[D]. Xi’an: Xi’an University of Technology, 2023. (in Chinese).
    [11] 艾立夫. 基于散射光暗场显微的基片表面颗粒检测方法研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2019.

    AI L F. The detection method of substrate surface particles based on dark field microscopy of scattered light[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2019. (in Chinese).
    [12] 高友帅. 基于光散射成像的单颗粒追踪方法及其在细胞微环境中的应用研究[D]. 济南: 山东大学, 2024.

    GAO Y SH. Research on single particle tracking method based on light scattering imaging and its application in cellular microenvironment[D]. Jinan: Shandong University, 2024. (in Chinese).
    [13] 贺仁智. 基于离焦图像的深度估计与测量[D]. 重庆: 重庆大学, 2023.

    HE R ZH. Depth estimation and measurement based on focused images[D]. Chongqing: Chongqing University, 2023. (in Chinese).
    [14] 沈建琪. 光散射法测粒技术延伸测量下限的研究[D]. 上海: 上海理工大学, 1999.

    SHEN J Q. Extension of lower measurement limit for particle sizing by light scattering[D]. Shanghai: University of Shanghai for Science and Technology, 1999. (in Chinese) .
    [15] DORODNYY A, SMAJIC J, LEUTHOLD J. Mie scattering for photonic devices[J]. Laser & Photonics Reviews, 2023, 17(9): 2300055.
    [16] 曹西乐, 田兴, 穆童. 基于Mie理论和Debye模型的球形粒子散射特性研究[J]. 电子制作, 2025, 33(1): 116-120.

    CAO X L, TIAN X, MU T. Study on scattering characteristics of spherical particles based on Mie theory and Debye model[J]. Practical Electronics, 2025, 33(1): 116-120. (in Chinese) .
    [17] NAHM K B, WOLFE W L. Light-scattering models for spheres on a conducting plane: comparison with experiment[J]. Applied Optics, 1987, 26(15): 2995-2999. doi: 10.1364/AO.26.002995
    [18] STOKSETH P A. Properties of a defocused optical system[J]. Journal of the Optical Society of America, 1969, 59(10): 1314-1321. doi: 10.1364/JOSA.59.001314
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-12
  • 录用日期:  2025-10-09
  • 网络出版日期:  2025-11-11

目录

    /

    返回文章
    返回
    Baidu
    map