High-precision microwave photonic temperature sensor using thin-film lithium niobate micro-ring
-
摘要:
为实现高精度温度传感,本文提出了一种基于高品质因子薄膜铌酸锂微环谐振器与微波光子读取技术的温度传感器。该系统中,薄膜铌酸锂微环谐振器(线宽为2.87 pm,Q值高达105)同时作为温度感知单元和微波光子滤波器的核心处理部件,利用热光效应将温度变化转换为光学谐振波长偏移,并创新性地借助微波光子技术将其线性映射为微波通带频率变化,采用矢量网络分析仪对微波频率响应进行精确探测,通过高精度频率响应变化实现温度测量,最终建立了温度与频率偏移量之间的定量关系模型。与传统直接检测光学波长变化的方法相比,微波光子学读取技术通过将微小的光学谐振波长偏移量线性地转换为微波通带中心频率的变化,突破了光谱仪固有的波长检测分辨率限制。实验结果表明,传感器灵敏度达27 MHz/°C,分辨率可达0.002 °C,在0.01 °C实验温度变化条件下,保持良好的线性响应。本研究有效解决了传统光学测温中灵敏度与分辨率之间的权衡问题,为片上集成高精度温度传感提供了新方案。
Abstract:This paper presents a high-precision temperature sensor based on a high-quality factor thin-film lithium niobate microring resonator integrated with a microwave photonic readout system. The microring resonator, with a narrow linewidth of 2.87 pm and a high Q-factor of 105, functions simultaneously as the temperature-sensing element and the core signal processing component of a microwave photonic filter. Through the thermo-optic effect, temperature variations are converted into shifts in the optical resonance wavelength, which are innovatively mapped to linear changes in the passband center frequency of the microwave photonic filter. A vector network analyzer is employed to accurately detect the microwave frequency response, enabling temperature measurement via high-resolution frequency variations and establishing a quantitative model between temperature and frequency shift. In contrast to conventional methods that directly track optical wavelength shifts, the proposed microwave photonic readout technique linearly converts minute resonance wavelength shifts into changes in the microwave center frequency, thereby overcoming the resolution limitations inherent in conventional optical spectrum analyzers. Experimental results demonstrate a sensitivity of 27 MHz/°C and a resolution of 0.002 °C, with excellent linearity maintained under temperature variations as small as 0.01 °C. This work effectively resolves the trade-off between sensitivity and resolution in traditional optical temperature sensing, offering a novel solution for on-chip integrated high-precision temperature monitoring.
-
Key words:
- micro-ring resonator /
- temperature sensor /
- thin film lithium niobate /
- microwave photons
-
图 3 温度传感系统示意图及工作原理。(ASE:放大自发辐射;OI:光隔离器;PC:偏振控制器;IM:强度调制器;VS:电压源;EDFA:掺铒光纤放大器;Opt. Switch:光开关;PD:光电探测器;VNA:矢量网络分析仪;OSA:光谱分析仪)
Figure 3. Schematic of the temperature sensing system and operational principle. (ASE: amplified spontaneous emission; OI: optical isolator; PC: polarization controller; IM: intensity modulator; VS: Voltage source; EDFA: Erbium-doped Optical Fiber Amplifier; Opt. Switch: optical switch; PD: photodetector; VNA: vector net analyzer; OSA: optical spectrum analyzer)
图 4 波长检测法。(a)微环谐振器透射光谱;(b)25 °C至31 °C温度调制下的谐振波长漂移;(c)微环谐振器线宽表征;(d)温度-波长的线性相关性及拟合函数
Figure 4. Wavelength detection method. (a) Transmission spectrum of a micro-ring resonator; (b) Resonant wavelength drift under thermal modulation from 25 °C to 31 °C; (c) Full width at half maximum of the micro-ring resonator; (d) Linear temperature-wavelength correlation with fitting function
图 5 频移检测法。(a)0-20 GHz范围内的谐振谱;(b)18 °C至34 °C温度调制下的谐振频率偏移;(c)变化1 °C温度-频率的线性相关性及拟合函数;(d)变化0.01 °C温度-频率的线性相关性及拟合函数
Figure 5. Frequency shift detection method. (a) Resonant response over the 0-20 GHz range; (b) Resonant frequency drift under thermal modulation from 18 °C to 34 °C; (c) Linear temperature-frequency relationship (per 1 °C) and fitting function; (d) Linear temperature-frequency relationship (per 0.01 °C) and fitting function
表 1 各类温度传感器的性能对比
Table 1. Performance comparison of various temperature sensors
-
[1] 钟宇, 张瑜, 康秀芝, 等. 单胺类神经递质电化学传感器的研究进展[J]. 分析化学, 2025, 53(9): 1411-1421. doi: 10.19756/j.issn.0253-3820.241145ZHONG Y, ZHANG Y, KANG X ZH, et al. Research progress on electrochemical sensors for monoamine neurotransmitters[J]. Chinese Journal of Analytical Chemistry, 2025, 53(9): 1411-1421. (in Chinese). doi: 10.19756/j.issn.0253-3820.241145 [2] 刘兰财, 宋巨华, 王涛, 等. 可穿戴电化学汗液传感器的研究进展及其在运动监测中的应用[J]. 分析化学, 2024, 52(6): 751-762. doi: 10.19756/j.issn.0253-3820.231392LIU L C, SONG J H, WANG T, et al. Research progress of wearable electrochemical sweat sensors and their application in sport monitoring[J]. Chinese Journal of Analytical Chemistry, 2024, 52(6): 751-762. (in Chinese). doi: 10.19756/j.issn.0253-3820.231392 [3] 刘强, 马超, 魏淑辉, 等. 基于铰链杠杆结构光纤光栅温度压力传感器[J]. 中国光学, 2025, 18(1): 63-69. doi: 10.37188/CO.2024-0090LIU Q, MA CH, WEI SH H, et al. Fiber Bragg grating temperature and pressure sensor based on hinge lever structure[J]. Chinese Optics, 2025, 18(1): 63-69. doi: 10.37188/CO.2024-0090 [4] 钟华秀. NTC温度传感器设计研究[D]. 广州: 广东工业大学, 2025.ZHONG H X. Study on NTC temperature sensor design[D]. Guangzhou: Guangdong University of Technology, 2025. (in Chinese). [5] WANG T, ZHANG P P, LIU SH Q, et al. A Bi-CP-based solid-state thin-film sensor: preparation and luminescence sensing for bioamine vapors[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. [6] 曹琳安, 马登岳, 徐刚. 电子导电金属有机框架电化学传感器的研究进展[J]. 无机化学学报, 2025, 41(10): 1953-1972.CAO L A, MA D Y, XU G. Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors[J]. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. (in Chinese). [7] CHEN L Y, CHEN Y J, WU D S, et al. High-sensitivity silicon nitride optical temperature sensor based on cascaded Mach-Zehnder interferometers[J]. Optical Materials, 2025, 165: 117139. doi: 10.1016/j.optmat.2025.117139 [8] VERMA Y K, KUMARI S, TRIPATHI S M. Grating assisted temperature insensitive micro-ring resonator biosensor[J]. Journal of Optics, 2023, 25(12): 125801. doi: 10.1088/2040-8986/ad0250 [9] 后林军, 冯松, 欧阳杰, 等. 硅基微环谐振器研究进展[J]. 光通信研究, 2024(6): 230084. doi: 10.13765/j.gtxyj.2024.230084HOU L J, FENG S, OU Y J, et al. Research progress of silicon based micro ring resonators[J]. Study on Optical Communications, 2024(6): 230084. (in Chinese). doi: 10.13765/j.gtxyj.2024.230084 [10] 王艺蒙, 舒浩文, 韩秀友. 高精度硅基集成光学温度传感器研究[J]. 中国光学, 2021, 14(6): 1355-1361. doi: 10.37188/CO.2021-0054WANG Y M, SHU H W, HAN X Y. High-precision silicon-based integrated optical temperature sensor[J]. Chinese Optics, 2021, 14(6): 1355-1361. (in Chinese). doi: 10.37188/CO.2021-0054 [11] SONG J, SUN S M, JIANG CH, et al. Ultra-sensitive temperature and pressure sensor based on PDMS-based FPI and Vernier effect[J]. Optics Letters, 2023, 48(7): 1674-1677. doi: 10.1364/OL.480506 [12] SUN A K, LIU Y J, LI J, et al. Room-temperature high-performance hydrogen gas sensor based on Pd-doped MoO3/Si heterojunction[J]. Ceramics International, 2025, 51(29): 59975-59982. doi: 10.1016/j.ceramint.2025.10.126 [13] HASHEMITAHERI M, EBRAHIMI E, DE SILVA G, et al. Optical sensor for BTEX detection: integrating machine learning for enhanced sensing[J]. Advanced Sensor and Energy Materials, 2024, 3(3): 100114. doi: 10.1016/j.asems.2024.100114 [14] WANG J Q, ZHANG H, CHEN S, et al. A silicon microring resonator for refractive index carbon dioxide gas sensing[J]. ACS Sensors, 2025, 10(7): 4938-4944. doi: 10.1021/acssensors.5c00568 [15] LIANG H W, ZHAO Y N, SUN Y, et al. Simultaneous measurement of salinity and temperature based on ring-shaped microfiber resonator[J]. Optical Fiber Technology, 2025, 94: 104357. doi: 10.1016/j.yofte.2025.104357 [16] LI X L, LI H Q, XIE F L, et al. Characterization of photonic temperature sensors by comparative human body measurements using waveguide Bragg grating and microring resonator-based sensors[J]. IEEE Sensors Journal, 2025, 25(9): 15005-15012. doi: 10.1109/JSEN.2025.3550405 [17] OU X P, TANG B, ZHANG P, et al. Microring resonator based on polarization multiplexing for simultaneous sensing of refractive index and temperature on silicon platform[J]. Optics Express, 2022, 30(14): 25627-25637. doi: 10.1364/OE.459743 [18] CHEN G Y, BRAMBILLA G, NEWSON T P. Inspection of electrical wires for insulation faults and current surges using sliding temperature sensor based on optical Microfibre coil resonator[J]. Electronics Letters, 2013, 49(1): 46-47. doi: 10.1049/el.2012.3554 [19] YANG H J, WANG SH SH, WANG X, et al. Temperature sensing in seawater based on microfiber knot resonator[J]. Sensors, 2014, 14(10): 18515-18525. doi: 10.3390/s141018515 [20] KIM H T, YU M. Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range[J]. Optics Express, 2016, 24(9): 9501-9510. doi: 10.1364/OE.24.009501 [21] BISWAS U, RAKSHIT J K, DAS J, et al. Design of an ultra-compact and highly-sensitive temperature sensor using photonic crystal based single micro-ring resonator and cascaded micro-ring resonator[J]. Silicon, 2021, 13(3): 885-892. doi: 10.1007/s12633-020-00489-z [22] SHI Y Y, CHENG L, YI Y F, et al. High-sensitivity on-chip temperature sensor based on cascaded microring resonators[J]. Open Physics, 2023, 21(1): 20230138. doi: 10.1515/phys-2023-0138 [23] YANG L, ZHUANG Y Y, ZHANG Y F, et al. Robustly packaged lithium niobate resonator-based temperature sensor[J]. Journal of Optics, 2024, 26(12): 125403. doi: 10.1088/2040-8986/ad8c59 [24] HU J K, WU J Y, JIN D, et al. Thermo-optic response and optical bistablility of integrated high-index doped silica ring resonators[J]. Sensors, 2023, 23(24): 9767. doi: 10.3390/s23249767 [25] 张杨博文. 用于FMCW金宝搏188软件怎么用 雷达的环形谐振器波长可调谐特性研究[D]. 西安: 西安工业大学, 2024.ZHANG Y B W. Study on wavelength tunable characteristics of ring resonator for FMCW LiDAR[D]. Xi’an: Xi’an Technological University, 2024. (in Chinese). [26] DUMON P. Ultra-compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology[D]. Ghent: Universiteit Gent, 2007. [27] BAVIKADI S R, PASUNOOTI M, ETHIRAJ R, et al. Thermo optic and thermo polarizability coefficients of lithium rich LiNbO3 by the point dipole approximation[J]. International Journal of Current Engineering and Technology, 2016, 6(1): 112-116. [28] MORETTI L, IODICE M, CORTE F G D, et al. Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions[J]. Journal of Applied Physics, 2005, 98(3): 036101. doi: 10.1063/1.1988987 [29] 吴蓉, 张皓辰. 耦合区数量对鼎形微环谐振器输出的影响(英文)[J]. 中国光学(中英文), 2023, 16(6): 1493-1500.WU R, ZHANG H CH. The influence of the number of coupling regions on the output of the ding-shaped microring resonator[J]. Chinese Optics, 2023, 16(6): 1493-1500. (查阅网上资料, 本条文献为英文文献, 请确认). [30] LIAO J, YANG L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements[J]. Light: Science & Applications, 2021, 10(1): 32. [31] SMITH D S, RICCIUS H D, EDWIN R P. Refractive indices of lithium niobate[J]. Optics Communications, 1976, 17(3): 332-335. doi: 10.1016/0030-4018(76)90273-X [32] FENG D Q, KAI L, ZHU T, et al. High-precision strain-insensitive temperature sensor based on an optoelectronic oscillator[J]. Optics Express, 2019, 27(26): 37532-37540. doi: 10.1364/OE.27.037532 [33] XU R H, ZHANG X P. Multiwavelength Brillouin–erbium fiber laser temperature sensor with tunable and high sensitivity[J]. IEEE Photonics Journal, 2015, 7(3): 1501708. doi: 10.1109/jphot.2015.2422132 [34] CHEW S X, YI X K, YANG W J, et al. Optoelectronic oscillator based sensor using an on-chip sensing probe[J]. IEEE Photonics Journal, 2017, 9(2): 5500809. doi: 10.1109/jphot.2017.2671461 -
下载: