留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Independent sampling and padding for Rayleigh–Sommerfeld diffraction: A scaled convolution approach

YANG Chen FU Xi-hong FU Xin-peng BAYANHESHIG

杨晨, 付喜宏, 付鑫鹏, . 基于缩放卷积的瑞利-索末菲衍射积分的独立采样与补长方法[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2025-0028
引用本文: 杨晨, 付喜宏, 付鑫鹏, . 基于缩放卷积的瑞利-索末菲衍射积分的独立采样与补长方法[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2025-0028
YANG Chen, FU Xi-hong, FU Xin-peng, BAYANHESHIG. Independent sampling and padding for Rayleigh–Sommerfeld diffraction: A scaled convolution approach[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0028
Citation: YANG Chen, FU Xi-hong, FU Xin-peng, BAYANHESHIG. Independent sampling and padding for Rayleigh–Sommerfeld diffraction: A scaled convolution approach[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0028

基于缩放卷积的瑞利-索末菲衍射积分的独立采样与补长方法

Independent sampling and padding for Rayleigh–Sommerfeld diffraction: A scaled convolution approach

doi: 10.37188/CO.EN-2025-0028
Funds: Supported by National Key Research and Development Program of China (No. 2022YFB3606100); National Natural Science Foundation of China (No. U21A20509, No. 6127901)
More Information
    Author Bio:

    Yang Chen (1998—), male, from Xianning, Hubei, master's degree, received his bachelor's degree from Zhengzhou University in 2020, mainly engaged in the research of Fourier optics. E-mail: Alenyng510@163.com

    Bayanheshig (1962—), male, from Darat Banner, Ordos, Inner Mongolia, Ph.D., Professor, Doctoral Supervisor, received Ph.D. degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science in 2004, mainly engaged in the research of grating theory, grating design methodology, grating fabrication technology and spectral imaging technology. E-mail: bayin888@sina.com

    Corresponding author: bayin888@sina.com
  • 摘要:

    我们提出了一种新颖的对瑞利-索末菲衍射积分的快速数值计算方法,该方法在已有的缩放卷积方法的基础上发展而来。该方法实现了对离轴且输入面和观察面的采样间隔与采样数量均不等的一般情形的快速计算,并且可以任意调整脉冲响应函数的采样间隔从而实现对计算负载与计算精度的手动取舍。这种与插值等价的方法的误差主要来自脉冲响应函数的采样矩阵在其周期延拓边界上的不连续性,我们针对这一点提出了补长函数的概念及其构造方法,并评估了补长函数对提高计算精度的效果。通过数值模拟验证了所提出方法的可行性,并在简化场景里与直接积分法作了对比,表明所提出方法在非近场衍射下对输入面与观察面采样间隔不等的一般情形具有良好的计算精度,且在衍射距离很大时,虽然其计算精度无法超过直接积分法,但可以在几乎不影响计算精度的前提下,大幅降低计算量。该方法为计算全息等领域提供了在非近场情形下较为通用的衍射数值计算方法。

     

  • Figure 1.  Schematic diagram of one-dimensional diffraction

    Figure 2.  Illustration of the selection equation

    Figure 3.  Modified selection equation

    Figure 4.  Real part of periodic extension of (a) $ \left[h\right] $ before padding, (b) $ \left[{h}'\right] $ after padding

    Figure 5.  Effects of the oversampling factor and padding factor on the SNR of the IRF

    Figure 6.  Setup for the numerical diffraction of off-axis propagation

    Figure 7.  Numerical diffraction patterns at different magnifications, where: (a) reference image calculated by numerical integration for mag=20, while (b) mag=1, (c) mag=5, (d) mag=20 are calculated by ISSC

    Figure 8.  SNR of numerical diffraction with different oversampling factors and padding factors when $ \textit{z} = $$ 100 $ mm

    Figure 9.  (a) Setup for comparison and (b) square aperture

    Figure 10.  SNR of the ISSC method varying with the sampling number of the IRF at a propagation distance of (a) $ \textit{z} =50 $ mm, (b) $ \textit{z} =100 $ mm, (c) $ \textit{z} = $$ 500 $ mm, and (d) $ \textit{z} =1\;000 $ mm

    Figure 11.  Average computation time of ISSC method varying with the propagation distance

    Figure 12.  Analytical curve, original signal x(n), and interpolated signal $ \tilde{x}\left(n\right) $ for $ N=20 $

    Figure 13.  Analytical curve, original signal x(n), and interpolated signal $ \tilde{x}\left(n\right) $ for $ {N}'=15 $

    Baidu
  • [1] GOODMAN J W. Introduction to Fourier Optics[M]. 3rd ed. Greenwoood Village, Co.: Roberts & Company Publishers, 2005.
    [2] PENG Y F, CHOI S, KIM J, et al. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration[J]. Science Advances, 2021, 7(46): eabg5040. doi: 10.1126/sciadv.abg5040
    [3] FRATZ M, SEYLER T, BERTZ A, et al. Digital holography in production: an overview[J]. Light: Advanced Manufacturing, 2021, 2(3): 283-295.
    [4] BOOMINATHAN V, ROBINSON J T, WALLER L, et al. Recent advances in lensless imaging[J]. Optica, 2022, 9(1): 1-16. doi: 10.1364/OPTICA.431361
    [5] XIAO J SH, ZHANG W H, ZHANG H. Sampling analysis for Fresnel diffraction fields based on phase space representation[J]. Journal of the Optical Society of America A, 2022, 39(2): A15-A28. doi: 10.1364/JOSAA.440464
    [6] ZHANG W H, ZHANG H, JIN G F. Single-Fourier transform based full-bandwidth Fresnel diffraction[J]. Journal of Optics, 2021, 23(3): 035604. doi: 10.1088/2040-8986/abdf68
    [7] MATSUSHIMA K, SHIMOBABA T. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields[J]. Optics Express, 2009, 17(22): 19662-19673. doi: 10.1364/OE.17.019662
    [8] WEI H Y, LIU X, HAO X, et al. Modeling off-axis diffraction with the least-sampling angular spectrum method[J]. Optica, 2023, 10(7): 959-962. doi: 10.1364/OPTICA.490223
    [9] ZHANG W H, ZHANG H, MATSUSHIMA K, et al. Shifted band-extended angular spectrum method for off-axis diffraction calculation[J]. Optics Express, 2021, 29(7): 10089-10103. doi: 10.1364/OE.419096
    [10] SHEN F B, WANG A B. Fast-Fourier-transform based numerical integration method for the Rayleigh–Sommerfeld diffraction formula[J]. Applied Optics, 2006, 45(6): 1102-1110. doi: 10.1364/AO.45.001102
    [11] LOBAZ P. Reference calculation of light propagation between parallel planes of different sizes and sampling rates[J]. Optics Express, 2011, 19(1): 32-39. doi: 10.1364/OE.19.000032
    [12] ZHAO W L, LU J, MA J, et al. Technique for enhancing the accuracy of the Rayleigh–Sommerfeld convolutional diffraction through the utilization of independent spatial sampling[J]. Optics Letters, 2024, 49(5): 1385-1388. doi: 10.1364/OL.509688
    [13] NASCOV V, LOGOFĂTU P C. Fast computation algorithm for the Rayleigh-Sommerfeld diffraction formula using a type of scaled convolution[J]. Applied Optics, 2009, 48(22): 4310-4319. doi: 10.1364/AO.48.004310
    [14] ISSC-method-for-RSD-integration[EB/OL]. https://github.com/Alen-Yng/ISSC-method-for-RSD-integration. (查阅网上资料,未找到本条文献作者和更新日期和引用日期信息,请确认补充).
  • 加载中
图(13)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 录用日期:  2025-06-23
  • 网络出版日期:  2025-11-11

目录

    /

    返回文章
    返回
    Baidu
    map