留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A noise suppression method for interferometric fiber optic sensor based on ameliorated EFA and adaptive SVMD

PENG Meng-fan ZHOU Ci-ming PAN Zhen JIANG Han LI Ao WANG Tian-yi LIU Han-jie FAN Dian

彭梦帆, 周次明, 潘震, 蒋涵, 李傲, 王天意, 刘涵洁, 范典. 基于改进EFA和自适应SVMD的干涉型光纤传感器噪声抑制方法[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2025-0038
引用本文: 彭梦帆, 周次明, 潘震, 蒋涵, 李傲, 王天意, 刘涵洁, 范典. 基于改进EFA和自适应SVMD的干涉型光纤传感器噪声抑制方法[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2025-0038
PENG Meng-fan, ZHOU Ci-ming, PAN Zhen, JIANG Han, LI Ao, WANG Tian-yi, LIU Han-jie, FAN Dian. A noise suppression method for interferometric fiber optic sensor based on ameliorated EFA and adaptive SVMD[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0038
Citation: PENG Meng-fan, ZHOU Ci-ming, PAN Zhen, JIANG Han, LI Ao, WANG Tian-yi, LIU Han-jie, FAN Dian. A noise suppression method for interferometric fiber optic sensor based on ameliorated EFA and adaptive SVMD[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0038

基于改进EFA和自适应SVMD的干涉型光纤传感器噪声抑制方法

详细信息
  • 中图分类号: TP212.14

A noise suppression method for interferometric fiber optic sensor based on ameliorated EFA and adaptive SVMD

doi: 10.37188/CO.EN-2025-0038
Funds: Supported by National Natural Science Foundation of China (No. 62275204, No. 52071245); Key Research and Development Program of Hubei Province (No. 2023DJC170)
  • 摘要:

    噪声干扰是影响传感系统稳定性和数据准确性的关键瓶颈,现有的抑制策略无法同时降低固有系统噪声和外部环境噪声。为了解决这个问题,本文提出了一种基于改进椭圆拟合算法(AEFA)和自适应连续变分模分解(ASVMD)的复合去噪方法。对于与干涉信号中直流(DC)、交流(AC)分量紧密耦合的系统噪声,AEFA 通过消除上述分量实现有效抑制。主要存在于解调相位信号中的环境噪声分量可以通过SVMD技术自适应地提取。为了自动获得最优分解结果,引入置换熵(PE)准则来优化分解参数。相关系数(CC)用于区分分解结果中的有效分量和噪声分量。实验结果表明,AEFA和ASVMD相结合的算法有效地抑制了系统和环境噪声。在处理50 Hz振动信号时,所提出的方案实现了17.81 dB的降噪和35.14 μrad/√Hz的相位分辨率。鉴于其出色的噪声抑制性能,该方案在高性能干涉传感系统中具有巨大的应用潜力。

     

  • Figure 1.  Structure of sensing system. ISO: isolator; PZT: PbZrTiO3 piezoelectric ceramic; APD: avalanche photodetector; DAQ: data acquisition

    Figure 2.  Flowchart of the complete algorithm principle

    Figure 3.  Simulation diagram of 3 × 3 coupler output signals

    Figure 4.  Comparison of simulated signal Lissajous figure. (a) classical EFA output signals $ sin\left(\varphi \right) $ and $ cos\left(\varphi \right) $. (b) AEFA output signals $ {x}_{1} $and $ {x}_{2} $

    Figure 5.  The PE value of the IMF components with the highest correlation coefficient at different $ \alpha $ in the simulation

    Figure 6.  Comparison of noise reduction results

    Figure 7.  Experimental diagram of 3 × 3 coupler output signals

    Figure 8.  Comparison of experimental signal Lissajous figure. (a) classic EFA output signals $ \mathrm{s}\mathrm{i}\mathrm{n}\left(\varphi \right) $ and $ \mathrm{c}\mathrm{o}\mathrm{s}\left(\varphi \right) $. (b) AEFA output signals $ {x}_{1} $ and $ {x}_{2} $

    Figure 9.  The PE value of the IMF components with the highest correlation coefficient at different $ \alpha $ in the experiment

    Figure 10.  Decomposition results of phase signal

    Figure 11.  The vibration signals output by different methods.

    Figure 12.  The spectrum of 50 Hz vibration signals output by two different methods

    Table  1.   Comparison of THD and SNR between EFA and AEFA results

    AlgorithmTHD (%)SNR (dB)
    EFA0.154137.6787
    AEFA0.112040.0029
    下载: 导出CSV

    Table  2.   The CC between decomposition results and simulated signal

    IMF componentCC
    IMF10.9999
    IMF20.0038
    IMF30.0036
    下载: 导出CSV

    Table  3.   Comparison of THD and SNR between EFA And AEFA results

    AlgorithmTHD (%)SNR (dB)
    EFA0.173352.9978
    AEFA0.171654.2644
    下载: 导出CSV

    Table  4.   The CC between decomposition results and experimental signal

    IMF componentCC value
    IMF10.9999
    IMF20.0037
    IMF30.0015
    IMF40.0007
    IMF50.0005
    IMF60.0006
    下载: 导出CSV
    Baidu
  • [1] MA SH N, XU Y P, PANG Y X, et al. Optical fiber sensors for high-temperature monitoring: a review[J]. Sensors, 2022, 22(15): 5722. doi: 10.3390/s22155722
    [2] SAHOTA J K, GUPTA N, DHAWAN D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical Engineering, 2020, 59(6): 060901.
    [3] PENDÃO C, SILVA I. Optical fiber sensors and sensing networks: overview of the main principles and applications[J]. Sensors, 2022, 22(19): 7554. doi: 10.3390/s22197554
    [4] GUEVARA-HERNANDEZ S D, HERNANDEZ-GARCIA J C, FILOTEO-RAZO J D, et al. Design and study of fiber optic interferometric devices applied to vibration detection systems[J]. Proceedings of SPIE, 2024, 12880: 1288005.
    [5] CORREA A I, GALARZA M, DAULIAT R, et al. High-frequency vibration sensor using a fiber laser with a multicore fiber interferometer[J]. IEEE Sensors Journal, 2024, 24(6): 7656-7662. doi: 10.1109/JSEN.2023.3348502
    [6] ALSHAMMARI M, CHU Y F, HAN M. Real-time in situ phase sensitivity calibration of interferometric fiber-optic ultrasonic sensors[J]. Optics Letters, 2024, 49(18): 5336-5339. doi: 10.1364/OL.538136
    [7] HE Z Y, LIU Q W. Optical fiber distributed acoustic sensors: a review[J]. Journal of Lightwave Technology, 2021, 39(12): 3671-3686. doi: 10.1109/JLT.2021.3059771
    [8] PLOTNIKOV M Y, LAVROV V S, DMITRASCHENKO P Y, et al. Thin cable fiber-optic hydrophone array for passive acoustic surveillance applications[J]. IEEE Sensors Journal, 2019, 19(9): 3376-3382. doi: 10.1109/JSEN.2019.2894323
    [9] TEJEDOR J, MACIAS-GUARASA J, MARTINS H F, et al. Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: architectural issues and blind field test results[J]. Journal of Lightwave Technology, 2018, 36(4): 1052-1062. doi: 10.1109/JLT.2017.2780126
    [10] PAN ZH, LIU H J, WANG L X, et al. Draw-tower-grating-based Fabry-Perot interferometers for simultaneous measurements of temperature and salinity[J]. Optics Express, 2024, 32(13): 22687-22699. doi: 10.1364/OE.523935
    [11] KIRKENDALL C K, DANDRIDGE A. Overview of high performance fibre-optic sensing[J]. Journal of Physics D: Applied Physics, 2004, 37(18): R197-R216. doi: 10.1088/0022-3727/37/18/R01
    [12] LIU F, XIE SH R, GU L J, et al. Common-mode noise suppression technique in interferometric fiber-optic sensors[J]. Journal of Lightwave Technology, 2019, 37(21): 5619-5627. doi: 10.1109/JLT.2019.2933449
    [13] PAN ZH, XU B, CHEN W J, et al. Improved complete ensemble empirical mode decomposition with adaptive noise and its application in noise reduction for fiber optic sensing[J]. Journal of Lightwave Technology, 2025, 43(5): 2466-2474. doi: 10.1109/JLT.2024.3489953
    [14] GUI L, WU X Q, YU B L, et al. An improved PGC demodulation algorithm based on a reference interferometer to reduce intensity and phase noise[J]. Optik, 2021, 247: 167884. doi: 10.1016/j.ijleo.2021.167884
    [15] ZHANG SH, ZHANG A L, PAN H G. Eliminating light intensity disturbance with reference compensation in interferometers[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1888-1891. doi: 10.1109/LPT.2015.2444421
    [16] XIA Q L, WU X Q, LIU X P, et al. Common-mode intensity noise suppression scheme in phase demodulation of 3×3 coupler based on ellipse fitting algorithm[J]. Optics Communications, 2025, 575: 131291. doi: 10.1016/j.optcom.2024.131291
    [17] YU ZH H, CAI Y F, MO D L. Comparative study on noise reduction effect of fiber optic hydrophone based on LMS and NLMS algorithm[J]. Sensors, 2020, 20(1): 301. doi: 10.3390/s20010301
    [18] LIU H J, ZHOU C M, PANG Y D, et al. Novel method for improving temperature resolution of fiber optic sensor based on variational mode decomposition[J]. Journal of Lightwave Technology, 2024, 42(6): 2137-2143. doi: 10.1109/JLT.2023.3325255
    [19] PAN ZH, LIU H J, WANG L X, et al. A novel method for improving salinity resolution of optical fiber sensor based on modified adaptive variational mode decomposition[J]. Optics & Laser Technology, 2024, 177: 111212.
    [20] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [21] MISHRA S P, WARULE P, DEB S. Speech emotion recognition using a combination of variational mode decomposition and Hilbert transform[J]. Applied Acoustics, 2024, 222: 110046. doi: 10.1016/j.apacoust.2024.110046
    [22] LI D Q, YI D, FU W Q, et al. Temperature and acoustic field reconstruction in fiber optic DAS system based on variational mode decomposition[J]. IEEE Sensors Journal, 2024, 24(10): 16196-16203. doi: 10.1109/JSEN.2024.3385206
    [23] NASSEF M G A, HUSSEIN T M, MOKHIAMAR O. An adaptive variational mode decomposition based on sailfish optimization algorithm and Gini index for fault identification in rolling bearings[J]. Measurement, 2021, 173: 108514. doi: 10.1016/j.measurement.2020.108514
    [24] RAYI V K, MISHRA S P, NAIK J, et al. Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting[J]. Energy, 2022, 244: 122585. doi: 10.1016/j.energy.2021.122585
    [25] NAZARI M, SAKHAEI S M. Successive variational mode decomposition[J]. Signal Processing, 2020, 174: 107610. doi: 10.1016/j.sigpro.2020.107610
    [26] FANG CH X, SHI J H, FU ZH Y, et al. Improved ellipse-fitting phase demodulation technique to suppress the effect of light source intensity noise in interferometric system[J]. Optics Letters, 2023, 48(7): 1690-1693. doi: 10.1364/OL.483090
    [27] GUO Y J, YANG Y D, JIANG SH F, et al. Rolling bearing fault diagnosis based on successive variational mode decomposition and the EP index[J]. Sensors, 2022, 22(10): 3889. doi: 10.3390/s22103889
    [28] BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102. doi: 10.1103/PhysRevLett.88.174102
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-11
  • 录用日期:  2025-10-27
  • 网络出版日期:  2025-11-11

目录

    /

    返回文章
    返回
    Baidu
    map