留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-wavelength pulses in synchronized mode-locked fiber lasers

WU Qiong GAO Bo ZHOU Lu-yao WEN Hong-lin QIAO Fei-hong WU Bing XU Ting LI Qi LI Ying-ying WU Ge LIU Lie

吴琼, 高博, 周璐瑶, 文红琳, 乔飞鸿, 吴冰, 徐婷, 李祁, 李莹莹, 吴戈, 刘列. 同步锁模光纤金宝搏188软件怎么用 器中的多波长脉冲[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2025-0039
引用本文: 吴琼, 高博, 周璐瑶, 文红琳, 乔飞鸿, 吴冰, 徐婷, 李祁, 李莹莹, 吴戈, 刘列. 同步锁模光纤金宝搏188软件怎么用 器中的多波长脉冲[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2025-0039
WU Qiong, GAO Bo, ZHOU Lu-yao, WEN Hong-lin, QIAO Fei-hong, WU Bing, XU Ting, LI Qi, LI Ying-ying, WU Ge, LIU Lie. Multi-wavelength pulses in synchronized mode-locked fiber lasers[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0039
Citation: WU Qiong, GAO Bo, ZHOU Lu-yao, WEN Hong-lin, QIAO Fei-hong, WU Bing, XU Ting, LI Qi, LI Ying-ying, WU Ge, LIU Lie. Multi-wavelength pulses in synchronized mode-locked fiber lasers[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0039

同步锁模光纤金宝搏188软件怎么用 器中的多波长脉冲

详细信息
  • 中图分类号: TP394.1;TH691.9

Multi-wavelength pulses in synchronized mode-locked fiber lasers

doi: 10.37188/CO.EN-2025-0039
Funds: Supported by Jilin Province Science and Technology Development Plan Project (No. 20240302021GX); Changchun Science and Technology Research Project (No. 24JB07)
More Information
    Author Bio:

    WU Qiong (2004—), female, born in Siping, Jilin Province, master. Her research focuses on ultrafast fiber lasers. E-mail: 2449308226@qq.com

    GAO Bo (1980—),male, born in Changchun, Jilin Province, professor. He received his Ph.D. degree from Jilin University in 2009. His current research interests focus on ultrafast fiber lasers, high power fiber lasers, nonlinear fiber optics. E-mail: gaobo0312@jlu.edu.cn

    WU Ge (1979—), male, born in Changchun, Jilin Province, senior engineer. He received his Ph.D. degree from Jilin University in 2012. His research interests include ultrafast lasers and nonlinear fiber optics. E-mail: wuge@jlu.edu.cn

    Corresponding author: gaobo0312@jlu.edu.cnwuge@jlu.edu.cn
  • 摘要:

    本文设计并提出了一种被动同步锁模光纤金宝搏188软件怎么用 器。该系统采用了双腔结构,并以非线性偏振旋转(NPR)机制作为锁模方式。通过协同控制两个对称子腔内的增益、偏振和光程长度,实现了稳定的同步锁模。实验表明了通过时间延迟线(TDL)可以调节子腔的重复频率,以此来实现同步锁模。实验结果揭示了多个光谱峰和等间距的脉冲序列,证实了在单一重复频率下稳定的多波长脉冲生成。这些研究在光通信、光谱分析和远程传感等领域具有广泛应用,为开发高性能多波长超短脉冲光源奠定了基础。

     

  • Figure 1.  Experimental schematic of a fiber laser with passive synchronous mode-locking.

    Figure 2.  Outputs of Sub-cavity 1 and Sub-cavity 2. Sub-cavity 1: (a) Optical spectrum; (b) Pulse sequence measured by oscilloscope; (c) Radio frequency (RF) spectrum with a span of 20 MHz. Sub-cavity 2: (d) Optical spectrum; (e) Pulse sequence measured by oscilloscope; (f) RF spectrum with a span of 20 MHz.

    Figure 3.  Asynchronized mode-locked output of the laser. (a) Optical spectrum; (b) Pulse train measured by an oscilloscope; (c) RF spectrum with a span of 25 MHz; (d) RF spectrum with a span of 0.5 MHz.

    Figure 4.  (a)-(d) show the changes in the RF spectrum as the TDL in sub-cavity 2 is adjusted. Fig. 4(e) shows the variation of the repetition frequency of sub-cavity 2 with the change in the TDL.

    Figure 5.  Synchronized mode-locking of a fiber laser. (a) Optical spectrum; (b) Pulse sequence measured by oscilloscope.

    Baidu
  • [1] HUA K, WANG D N, CHEN Q. Passively mode-locked fiber laser based on graphene covered single-mode fiber with inner short waveguides[J]. Optics Communications, 2022, 505: 127520. doi: 10.1016/j.optcom.2021.127520
    [2] REN SH, MA P F, LI W, et al. 3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality[J]. Nanomaterials, 2022, 12(15): 2541. doi: 10.3390/nano12152541
    [3] LI F, ZHAO W, WANG Y SH, et al. Large dispersion-managed broadband high-energy fiber femtosecond laser system with sub 300 fs pulses and high beam quality output[J]. Optics & Laser Technology, 2023, 157: 108653.
    [4] TAKEUCHI Y, YAMADA T, TANAKA Y, et al. Highly-stable microwave generation system based on figure-8 mode-locked fiber laser for space applications[J]. EPJ Web of Conferences, 2024, 307: 02005. doi: 10.1051/epjconf/202430702005
    [5] KAAKKUNEN J J J, LAAKSO P, KUJANPÄÄ V. Adaptive multibeam laser cutting of thin steel sheets with fiber laser using spatial light modulator[J]. Journal of Laser Applications, 2014, 26(3): 032008. doi: 10.2351/1.4883935
    [6] XU W Y, WANG G, LI Y F, et al. Frontier advances and challenges of high-power thulium-doped fiber lasers in minimally invasive medicine[J]. Photonics, 2025, 12(6): 614. doi: 10.3390/photonics12060614
    [7] PECHOLT B, VENDAN M, DONG Y Y, et al. Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(3-4): 239-250. doi: 10.1007/s00170-007-1223-5
    [8] LI Y Y, GAO B, MA CH Y, et al. Generation of high-peak-power femtosecond pulses in mamyshev oscillators: recent advances and future challenges[J]. Laser & Photonics Reviews, 2023, 17(4): 2200596.
    [9] MA Z L, ZHAO T X, HONG W Y, et al. Multi-wavelength spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Photonics, 2022, 9(10): 723. doi: 10.3390/photonics9100723
    [10] HUANG L J, FAN X Y, HE H J, et al. Single-end hybrid Rayleigh Brillouin and Raman distributed fibre-optic sensing system[J]. Light: Advanced Manufacturing, 2023, 4(3): 171-180.
    [11] SUN X Y, ZENG L, DU H F, et al. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings[J]. Optics & Laser Technology, 2020, 124: 105969.
    [12] ZHU F, HUNDERTMARK H, KOLOMENSKII A A, et al. High-power mid-infrared frequency comb source based on a femtosecond Er: fiber oscillator[J]. Optics Letters, 2013, 38(13): 2360-2362. doi: 10.1364/OL.38.002360
    [13] HAN Y, GUO Y B, GAO B, et al. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers[J]. Progress in Quantum Electronics, 2020, 71: 100264. doi: 10.1016/j.pquantelec.2020.100264
    [14] YU Q X, QI Y Y, BAI ZH X, et al. L-band of ~ 1.6 μm tunable multi-wavelength mode-locked Er-doped fiber laser with an MMF- FMF based structure[J]. Optical Fiber Technology, 2024, 84: 103762. doi: 10.1016/j.yofte.2024.103762
    [15] ZHOU L Y, LIU L, HAN Y, et al. Impact of pump power on Lyot filtering effect in mode-locked fiber lasers[J]. Chaos, Solitons & Fractals, 2025, 191: 115922.
    [16] ZHANG Q, DAI X, LI H ZH, et al. Tunable multi-wavelength mode-locked thulium-doped fiber laser with precise controlled wavelength spacing via Mach-Zehnder interferometer[J]. Optics & Laser Technology, 2025, 187: 112840.
    [17] JENSEN O B, HANSEN A K, CHI M, et al. Synchronous mode-locking of solid-state lasers by difference frequency generation[J]. Optics Letters, 2024, 49(10): 2713-2716. doi: 10.1364/OL.523991
    [18] XU J L, GUO SH Y, HE J L, et al. Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal[J]. Applied Physics B, 2012, 107(1): 53-58. doi: 10.1007/s00340-012-4877-0
    [19] KAWAGUCHI H, IWATA H, TAN-NO N. Picosecond optical pulse generation from mutually coupled laser diodes by synchronous pump mode-locking[J]. Japanese Journal of Applied Physics, 1991, 30(8A): L1402-L1405. doi: 10.1143/JJAP.30.L1402
    [20] LI Y, ZHAO K J, CAO B, et al. Carbon nanotube-synchronized dual-color fiber laser for coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 2020, 45(12): 3329-3332. doi: 10.1364/OL.393449
    [21] ZENG J, LI B W, HAO Q, et al. Passively synchronized dual-color mode-locked fiber lasers based on nonlinear amplifying loop mirrors[J]. Optics Letters, 2019, 44(20): 5061-5064. doi: 10.1364/OL.44.005061
    [22] WEN H L, LIU L, HAN Y, et al. Research on the influence of intra-cavity dispersion on pulse characteristics of a quartic soliton fiber laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2024, 57(1): 015401. doi: 10.1088/1361-6455/ad1d34
    [23] HAN Y, GAO B, WEN H L, et al. Pure-high-even-order dispersion bound solitons complexes in ultra-fast fiber lasers[J]. Light: Science & Applications, 2024, 13(1): 101.
    [24] HU G Q, PAN Y L, ZHAO X, et al. Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker[J]. Optics Letters, 2017, 42(23): 4942-4945. doi: 10.1364/OL.42.004942
    [25] LI Y Y, GAO B, HAN Y, et al. Switching and transformation of multi-state solitons in thulium-doped fiber laser based on nonlinear polarization rotation[J]. Optical Fiber Technology, 2024, 88: 103991. doi: 10.1016/j.yofte.2024.103991
    [26] HAO Q, QIAO Q, FU H M, et al. Observation of soliton molecules in NPR mode-locked Er-fiber laser via birefringence management[J]. IEEE Photonics Technology Letters, 2019, 31(8): 639-642. doi: 10.1109/LPT.2019.2903280
    [27] RODRÍGUEZ-MORALES L A, POTTIEZ O, ARMAS-RIVERA I, et al. Experimental and theoretical study of a novel input polarization-independent nonlinear optical loop mirror with elliptical birefringence[J]. Optics & Laser Technology, 2023, 163: 109454.
  • 加载中
图(5)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-28
  • 录用日期:  2025-11-04
  • 网络出版日期:  2025-11-11

目录

    /

    返回文章
    返回
    Baidu
    map