Multi-wavelength pulses in synchronized mode-locked fiber lasers
doi: 10.37188/CO.EN-2025-0039
-
摘要:
本文设计并提出了一种被动同步锁模光纤金宝搏188软件怎么用 器。该系统采用了双腔结构,并以非线性偏振旋转(NPR)机制作为锁模方式。通过协同控制两个对称子腔内的增益、偏振和光程长度,实现了稳定的同步锁模。实验表明了通过时间延迟线(TDL)可以调节子腔的重复频率,以此来实现同步锁模。实验结果揭示了多个光谱峰和等间距的脉冲序列,证实了在单一重复频率下稳定的多波长脉冲生成。这些研究在光通信、光谱分析和远程传感等领域具有广泛应用,为开发高性能多波长超短脉冲光源奠定了基础。
-
关键词:
- 同步锁模 /
- 光纤金宝搏188软件怎么用 器 /
- 多波长脉冲 /
- 双子腔
Abstract:We designed and investigated a passive synchronized mode-locked fiber laser. The device utilizes a dual-cavity structure driven by the Nonlinear Polarization Rotation (NPR) mechanism. Stable mode-locking is attained by synergistically controlling gain, polarization state, and optical path length in two symmetric sub-cavities. Experiments proved the sub-cavity repetition frequency's tunability via the time delay line (TDL), thereby enabling synchronized mode-locking. The system stably generates multi-wavelength pulses at a single repetition frequency, evidenced by multiple spectral peaks and equidistant pulse sequences. These findings facilitate the development of high-performance multi-wavelength ultrashort pulse sources, crucial for optical communications, spectral analysis, and remote sensing.
-
Key words:
- synchronized mode-locked /
- fiber laser /
- multi-wavelength pulses /
- dual-cavity
-
Figure 2. Outputs of Sub-cavity 1 and Sub-cavity 2. Sub-cavity 1: (a) Optical spectrum; (b) Pulse sequence measured by oscilloscope; (c) Radio frequency (RF) spectrum with a span of 20 MHz. Sub-cavity 2: (d) Optical spectrum; (e) Pulse sequence measured by oscilloscope; (f) RF spectrum with a span of 20 MHz.
-
[1] HUA K, WANG D N, CHEN Q. Passively mode-locked fiber laser based on graphene covered single-mode fiber with inner short waveguides[J]. Optics Communications, 2022, 505: 127520. doi: 10.1016/j.optcom.2021.127520 [2] REN SH, MA P F, LI W, et al. 3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality[J]. Nanomaterials, 2022, 12(15): 2541. doi: 10.3390/nano12152541 [3] LI F, ZHAO W, WANG Y SH, et al. Large dispersion-managed broadband high-energy fiber femtosecond laser system with sub 300 fs pulses and high beam quality output[J]. Optics & Laser Technology, 2023, 157: 108653. [4] TAKEUCHI Y, YAMADA T, TANAKA Y, et al. Highly-stable microwave generation system based on figure-8 mode-locked fiber laser for space applications[J]. EPJ Web of Conferences, 2024, 307: 02005. doi: 10.1051/epjconf/202430702005 [5] KAAKKUNEN J J J, LAAKSO P, KUJANPÄÄ V. Adaptive multibeam laser cutting of thin steel sheets with fiber laser using spatial light modulator[J]. Journal of Laser Applications, 2014, 26(3): 032008. doi: 10.2351/1.4883935 [6] XU W Y, WANG G, LI Y F, et al. Frontier advances and challenges of high-power thulium-doped fiber lasers in minimally invasive medicine[J]. Photonics, 2025, 12(6): 614. doi: 10.3390/photonics12060614 [7] PECHOLT B, VENDAN M, DONG Y Y, et al. Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(3-4): 239-250. doi: 10.1007/s00170-007-1223-5 [8] LI Y Y, GAO B, MA CH Y, et al. Generation of high-peak-power femtosecond pulses in mamyshev oscillators: recent advances and future challenges[J]. Laser & Photonics Reviews, 2023, 17(4): 2200596. [9] MA Z L, ZHAO T X, HONG W Y, et al. Multi-wavelength spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Photonics, 2022, 9(10): 723. doi: 10.3390/photonics9100723 [10] HUANG L J, FAN X Y, HE H J, et al. Single-end hybrid Rayleigh Brillouin and Raman distributed fibre-optic sensing system[J]. Light: Advanced Manufacturing, 2023, 4(3): 171-180. [11] SUN X Y, ZENG L, DU H F, et al. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings[J]. Optics & Laser Technology, 2020, 124: 105969. [12] ZHU F, HUNDERTMARK H, KOLOMENSKII A A, et al. High-power mid-infrared frequency comb source based on a femtosecond Er: fiber oscillator[J]. Optics Letters, 2013, 38(13): 2360-2362. doi: 10.1364/OL.38.002360 [13] HAN Y, GUO Y B, GAO B, et al. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers[J]. Progress in Quantum Electronics, 2020, 71: 100264. doi: 10.1016/j.pquantelec.2020.100264 [14] YU Q X, QI Y Y, BAI ZH X, et al. L-band of ~ 1.6 μm tunable multi-wavelength mode-locked Er-doped fiber laser with an MMF- FMF based structure[J]. Optical Fiber Technology, 2024, 84: 103762. doi: 10.1016/j.yofte.2024.103762 [15] ZHOU L Y, LIU L, HAN Y, et al. Impact of pump power on Lyot filtering effect in mode-locked fiber lasers[J]. Chaos, Solitons & Fractals, 2025, 191: 115922. [16] ZHANG Q, DAI X, LI H ZH, et al. Tunable multi-wavelength mode-locked thulium-doped fiber laser with precise controlled wavelength spacing via Mach-Zehnder interferometer[J]. Optics & Laser Technology, 2025, 187: 112840. [17] JENSEN O B, HANSEN A K, CHI M, et al. Synchronous mode-locking of solid-state lasers by difference frequency generation[J]. Optics Letters, 2024, 49(10): 2713-2716. doi: 10.1364/OL.523991 [18] XU J L, GUO SH Y, HE J L, et al. Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal[J]. Applied Physics B, 2012, 107(1): 53-58. doi: 10.1007/s00340-012-4877-0 [19] KAWAGUCHI H, IWATA H, TAN-NO N. Picosecond optical pulse generation from mutually coupled laser diodes by synchronous pump mode-locking[J]. Japanese Journal of Applied Physics, 1991, 30(8A): L1402-L1405. doi: 10.1143/JJAP.30.L1402 [20] LI Y, ZHAO K J, CAO B, et al. Carbon nanotube-synchronized dual-color fiber laser for coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 2020, 45(12): 3329-3332. doi: 10.1364/OL.393449 [21] ZENG J, LI B W, HAO Q, et al. Passively synchronized dual-color mode-locked fiber lasers based on nonlinear amplifying loop mirrors[J]. Optics Letters, 2019, 44(20): 5061-5064. doi: 10.1364/OL.44.005061 [22] WEN H L, LIU L, HAN Y, et al. Research on the influence of intra-cavity dispersion on pulse characteristics of a quartic soliton fiber laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2024, 57(1): 015401. doi: 10.1088/1361-6455/ad1d34 [23] HAN Y, GAO B, WEN H L, et al. Pure-high-even-order dispersion bound solitons complexes in ultra-fast fiber lasers[J]. Light: Science & Applications, 2024, 13(1): 101. [24] HU G Q, PAN Y L, ZHAO X, et al. Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker[J]. Optics Letters, 2017, 42(23): 4942-4945. doi: 10.1364/OL.42.004942 [25] LI Y Y, GAO B, HAN Y, et al. Switching and transformation of multi-state solitons in thulium-doped fiber laser based on nonlinear polarization rotation[J]. Optical Fiber Technology, 2024, 88: 103991. doi: 10.1016/j.yofte.2024.103991 [26] HAO Q, QIAO Q, FU H M, et al. Observation of soliton molecules in NPR mode-locked Er-fiber laser via birefringence management[J]. IEEE Photonics Technology Letters, 2019, 31(8): 639-642. doi: 10.1109/LPT.2019.2903280 [27] RODRÍGUEZ-MORALES L A, POTTIEZ O, ARMAS-RIVERA I, et al. Experimental and theoretical study of a novel input polarization-independent nonlinear optical loop mirror with elliptical birefringence[J]. Optics & Laser Technology, 2023, 163: 109454. -
下载: