Research progress on ultra-small self-focusing optical fiber probe
doi: 10.3788/CO.20181106.0875
-
摘要: 梯度折射率(Gradient-index,GRIN)光纤探头是一种全光纤型超小光学镜头,在心血管等狭小空间组织内窥影像检测中具有广阔的应用前景。但其发展一直缺少系统的理论体系。本文讨论探头设计、制作和性能测试等方面的关键问题。基于GRIN光纤探头聚焦性能的特征参数,对解析设计方法与数值仿真设计方法进行比较分析。针对超小GRIN光纤探头的制作难题,研究一种光纤熔接和切割的高精度一体化集成装置,描述GRIN光纤探头的制作方法。此外,分析了超小GRIN光纤探头聚焦性能检测的方法及装置。本文为超小GRIN光纤探头的设计、制作及性能测试提供了一个方法体系。Abstract: Gradient-index(GRIN) fiber probe is an all-fiber ultra-small optical lens, which has broad application prospects in endoscopic image detection in small spatial tissues such as cardiovascular. However, its development lacks a systematic theoretical system. This paper discusses the key issues of the design, fabrication and performance testing methods of the probe. Based on the characteristics parameters of GRIN fiber probe, comparative analysis is conducted between the analytical method and numerical simulation methods. An integrated high precision optical fiber welding and cutting device is presented for the fabrication of ultra-small GRIN optical fiber probe. In addition, the method and device for detecting the focusing performance of ultra-small GRIN fiber probe are analyzed. As a result, a system method for design, fabrication and performance testing is provided for the research of GRIN fiber probes.
-
Table 1. Preset length and the measured length of probe components
Group NCF length/mm GRIN fiber lens length/mm Preset length 1 0 0.360 2 0 0.410 3 0.160 0.200 4 0.240 0.140 5 0.360 0.110 6 0.300 0.150 Measured length 1 0 0.356 2 0 0.407 3 0.164 0.200 4 0.242 0.141 5 0.356 0.108 6 0.300 0.146 Table 2. Properties comparison between the testing values and the simulating data
Types Samples NCF/mm GRIN fiber lens/mm Working distance/mm Spot size/μm Experimental 1 0.36 0.10 0.75 31 results[9-10] 2 0.36 0.11 0.60 29 3 0.36 0.12 0.50 26 Analytical calculation 1 0.36 0.10 0.75 32.4 results 2 0.36 0.11 0.63 23.7 3 0.36 0.12 0.51 18.4 Numerical calculation 1 0.36 0.10 0.73 33 results using GLAD 2 0.36 0.11 0.64 28 3 0.36 0.12 0.52 25 Numerical calculation 1 0.36 0.10 0.75 32 results using Virtual Lab 2 0.36 0.11 0.63 24 3 0.36 0.12 0.51 19 -
[1] HUANG D, SWANSON E A, LIN C P. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181. doi: 10.1126/science.1957169 [2] FEICHERL A F, DREXLERL W, HITZENBERGERL C K, et al.. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 2003, 66(2003):239-303. http://d.old.wanfangdata.com.cn/Periodical/xsjs201505018 [3] JIANG Y, TOMOV I, WANG Y M, et al.. Second-harmonic optical coherence tomography[J]. Optics Letters, 2004, 29(10):1090-1092. doi: 10.1364/OL.29.001090 [4] ROLLINS A M, KULKARNI M D, YAZDANFAR S, et al.. In vivo video rate optical coherence tomography[J]. Opt. Express, 1998, 3(6):219-229. doi: 10.1364/OE.3.000219 [5] LIN Y, CHANG CH. Characteristics of two-segment lensed fiber collimator[J]. Microwave & Optical Technology Letters, 2010, 52(8):1846-1848. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11905f9e84b2372e91099b5fed3779e9 [6] SWANSON E, PETERSEN C L, MCNAMARA E, et al.. Ultra-small optical probes, imaging optics, and methods for using same: US, US6445939[P]. 2002. [7] REED W A, YAN M F, SCHNITZER M J. Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry[J]. Opt. Lett., 2002, 27:1794-1796 doi: 10.1364/OL.27.001794 [8] JAFRI M S, FARHANG S, TANG R S, et al.. Optical coherence tomography in the diagnosis and treatment of neurological disorders[J]. Biomed. Opt., 2005, 10(5):051603. doi: 10.1117/1.2116967 [9] MAO Y X, CHANG S D, SHERIF S, et al.. Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging[J]. Applied Optics, 2007, 46(23):5887-5894 doi: 10.1364/AO.46.005887 [10] MAO Y X, CHANG S D, FLUERARU C. Fiber lens for ultra-small probes used in optical coherent tomography[J]. Biomedical Science and Engineering, 2010, 3:27-34. doi: 10.4236/jbise.2010.31004 [11] JUNG W, BENALCAZAR W, AHNAD A, et al.. Numerical analysis of gradient index lens based optical coherence tomography imaging probes[J]. Journal of Biomedical Optics, 2010, 15(6):066027. doi: 10.1117/1.3523374 [12] LORENSER D, YANG X, SAMPSON D D. Accurate modeling and design of gradient-index fiber probes for optical coherence tomography using the beam propagation method[J]. IEEE Photonics Journal, 2013, 5(2):3900015. doi: 10.1109/JPHOT.2013.2250939 [13] MCLAUGHLIN R A, QUIRK B C, CURATOLO A, et al.. Imaging of breast cancer with optical coherence tomography needle probes:feasibility and initial results[J]. IEEE J. Sel. Top. Quantum Electron, 2012, 18(3):1184-1191. doi: 10.1109/JSTQE.2011.2166757 [14] PFEIER T, SCHMITTR R, KONIG N, et al. Interferometric measurement of injection nozzles using ultra-small fiber-optical probes[J]. Chin. Opt. Lett., 2011, 9(7):071202. doi: 10.3788/COL [15] SCHMITT R, PFEIER T, DEPIEREUX F, et al.. Novel fiber-optical interferometer with miniaturized probe for in-hole measurements[J]. Optoelectron. Lett., 2008, 4:140-142. doi: 10.1007/s11801-008-7098-3 [16] WANG C, MAO Y X, FANG C, et al.. Analytical method for designing gradient-index fiber probes[J]. Optical Engineering, 2011, 50(9):094202-1-9. doi: 10.1117/1.3626206 [17] WANG C, MAO Y X, TANG Z, et al.. Numerical analysis of GRIN lens based miniature probes for optical coherence tomography[J]. Opt. Precision Eng., 2011, 19(9):2300-2307. doi: 10.3788/OPE. [18] WANG C, MAO Y X, TANG Z, et al.. Numerical simulation of gradient-index fibre probe and its properties of light propagation[J]. Chinese Physics B, 2011, 20(11):114218-1-7. doi: 10.1088/1674-1056/20/11/114218 [19] 王驰, 毕书博, 王利, 等.超小自聚焦光纤探头研究用场追迹数值模拟技术[J].物理学报, 2013, 62(2):024217. http://d.old.wanfangdata.com.cn/Periodical/wlxb201302045WANG C, BI S B, WANG L, et al.. Field-tracing based numerical simulation technique for the investigation of ultra-small self-focusing optical fiber probe[J]. Acta Physica Sinica, 2013, 62(2):024217.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201302045 [20] WANG C, BI S B, XIA X Q, et al.. Field-tracing modeling of the ultra-small gradient-index fiber probe[J]. Optik, 2013, 124:6437-6443. doi: 10.1016/j.ijleo.2013.05.033 [21] WANG C, BI S B, XIA X Q, et al.. Further analysis of focusing performance of an ultra-small gradient-index fiber probe[J]. Optical Engineering, 2014, 53(1):013106. doi: 10.1117/1.OE.53.1.013106 [22] 王驰, 许婷婷, 毕书博, 等.测量自聚焦光纤透镜聚焦常数的曲线拟合算法[J].光学精密工程, 2015, 23(12):3309-3315. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201512004WANG C, XU T T, BI S B, et al.. Curve-fitting algorithm of measuring focusing constant of gradient-index fiber lens[J]. Opt. Precision Eng., 2015, 23(12):3309-3315.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201512004 [23] WANG C, ZHANG F, BI S B, et al.. Fabrication method of ultra-small gradient-index fiber probe[J]. Advances in Manufacturing, 2014, 2(4):327-332. doi: 10.1007/s40436-014-0089-7 [24] KOKODⅡ N G. Knife gauge for measurement of the intensity distribution in a beam of optical radiation[J]. Measurement Techniques, 2003, 46(3):240-244. doi: 10.1023/A:1024005127686 [25] BALLEGAARD H P, ANDERSEN B, BOEGH N S. Multibeam internal drum scanning system: WO, WO 2005012978 A1[P]. 2005. [26] CUI X Q, XIN H, WU J G, et al.. Slanted Hole Array Beam Profiler(SHArP)-a high-resolution portable beam profiler based on a slanted linear aperture array[J]. Optics Letters, 2006, 31(21):3161-3163. doi: 10.1364/OL.31.003161 [27] PANG M, RONG J, YUAN X W, et al.. Research on the measurement method for a large laser beam profile based on CCD diffuse transmission imaging[J]. Measurement Science & Technology, 2013, 24(12):125202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ce67455adee571fc1401a3755816137 [28] BI S B, WANG C, ZHU J, et al.. Detection method for the focusing performance of small fiber lens[C]. International Conference on Optical and Photonics Engineering, 2017: 104491E. [29] WANG C, SUN J M, SUN F, et al.. Coupling efficiency of ultra-small gradient-index fiber probe[J]. Optics Communications, 2017, 389:265-269. doi: 10.1016/j.optcom.2016.12.051 [30] 刘震, 王雪梅, 倪文波.基于MEMS传感器的高精度姿态角测量研究[J].中国测试, 2017, 43(2):6-12. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201702002LIU Z, WANG X, NI W. Research on attitude angle measurement with high precision based on MEMS sensors[J]. China Measurement & Test, 2017, 43(2):6-12.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201702002 [31] 程琳, 刘影, 田彦.基于最小均方误差的全光纤电流互感器调制相位扰动补偿方法研究[J].中国测试, 2016, 42(12):116-120. doi: 10.11857/j.issn.1674-5124.2016.12.024CHENG L, LIU Y, TIAN Y. Research on modulation phase disturbance compensation method for FOCT based on minimum mean square error[J]. China Measurement & Test, 2016, 42(12):116-120.(in Chinese) doi: 10.11857/j.issn.1674-5124.2016.12.024 [32] 蔡苹杨, 黄承韫, 安金玲.基于纳米氧化铟表面的二硫化碳传感器研究[J].中国测试, 2013, 39(5):42-45. http://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201305011.htmCAI P Y, HUANG C Y, AN J L, et al.. Research of gas sensor based on cataluminescence emission on the surface of nano-In2O3[J]. China Measurement & Test, 2013, 39(5):42-45.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201305011.htm [33] 叶廷东, 程韬波, 刘桂雄, 等.MEMS气敏传感信息的动态预测补偿方法[J].中国测试, 2014, 40(4):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20142014092200108502YE T D, CHENG T B, LIU G X, et al.. Dynamic predictive compensation method of MEMS gas sensing information[J]. China Measurement & Test, 2014, 40(4):1-5.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20142014092200108502 [34] 胡林亭, 李佩军, 姚志军.提高外场重频金宝搏188软件怎么用 光斑测量距离的研究[J].液晶与显示, 2016, 31(12):1137-1142. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201612007HU L T, LI P J, YAO ZH J. Improvement of the measuring distance of repetitive-frequency laser spot in field[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(12):1137-1142.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201612007 [35] 王嘉成, 孙海江, 刘培勋, 等.高分辨率多传感器融合图像跟踪系统的设计与实现[J].液晶与显示, 2016, 31(8):825-830. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608014WANG J CH, SUN H J, LIU P X, et al.. Design and implementation of high resolution multi-sensors fusion tracking system[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(8):825-830.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608014 [36] 丁鹏, 张叶, 刘让, 等.结合形态学和Canny算法的红外弱小目标检测[J].液晶与显示, 2016, 31(8):793-800. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608010DING P, ZHANG Y, LIU R, et al.. Infrared small target detection based on adaptive Canny algorithm and morphology[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(8):793-800.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608010 [37] 王玉坤, 贾娜, 张锐.金宝搏188软件怎么用 通信成像光斑处理方法研究[J].液晶与显示, 2017, 32(9):736-740. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010WANG Y K, JIA N, ZHANG R. Laser communication spots imaging process method[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(9):736-740.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010 [38] 吴春婷, 李贺, 蔡继兴, 等.采用马赫-曾德尔干涉法测量单晶硅在线应力损伤[J].光学精密工程, 2017, 25(5):1395-1401. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201705033WU CH T, LI H, CAI J X, et al.. Measurement of real-time stress damage of monocrystal silicon by Mach-Zehnder interferometry[J]. Opt. Precision Eng., 2017, 25(5):1395-1401.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201705033 [39] 李颖奎, 齐冀, 张洁, 等.基于液晶空间光调制器的变倍率金宝搏188软件怎么用 扩束技术研究[J].液晶与显示, 2018, 33(9):764-771. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809007LI Y K, QI J, ZHANG J, et al.. Laser beam expanding technology based on liquid crystal spatial light modulator[J]. Chinese Journal of Liquid Crystals and Display, 2018, 33(9):764-771.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809007 [40] 孔晓波, 刘丽娟, 刘永刚, 等.基于液晶/聚合物光栅的可调谐双波长有机金宝搏188软件怎么用 器[J].液晶与显示, 2018, 33(1):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs201801007KONG X B, LIU L J, LIU Y G, et al.. Tunable dual-wavelength organic laser based on holographic polymer dispersed liquid crystal grating[J]. Chinese Journal of Liquid Crystals and Display, 2018, 33(1):49-54.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs201801007 [41] 乌日娜, 王兴, 杨帆, 等.染料掺杂手性向列相液晶器件中实现随机金宝搏188软件怎么用 辐射[J].液晶与显示, 2018, 33(6):464-468. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201806003WU R N, WANG X, YANG F, et al.. Realization of random lasing in dye-doped chiralnematic liquid crystal[J]. Chinese Journal of Liquid Crystals and Display, 2018, 33(6):464-468.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201806003 [42] 吴迪, 葛廷武, 秦文斌, 等.光纤金宝搏188软件怎么用 器故障模式分析[J].发光学报, 2018, 39(7):1002-1007.. http://d.old.wanfangdata.com.cn/Periodical/fgxb201807017WU D, GE T W, QIN W B, et al.. Fault mode analysis on fiber laser[J]. Chinese Journal of Luminesecence, 2018, 39(7):1002-1007.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201807017 [43] 顾宏灿, 黄俊斌, 程玲, 等.20~1250 Hz光纤金宝搏188软件怎么用 加速度传感系统设计[J].中国光学, 2017, 10(4):469-476. //www.illord.com/CN/abstract/abstract9512.shtmlGU H C, HUANG J B, CHENG L, et al.. 20-1250 Hz fiber laser acceleration sensing system[J]. Chinese Optics, 2017, 10(4):469-476.(in Chinese) //www.illord.com/CN/abstract/abstract9512.shtml [44] 谢检来, 郝永芹, 张家斌, 等.一种具有低折射率的高对比度光栅反射镜的设计[J].发光学报, 2018, 39(6):855-861. http://d.old.wanfangdata.com.cn/Periodical/fgxb201806016XIE J L, HAO Y Q, ZHANG J B, et al.. Design of high contrast grating mirror with low index grating layer[J]. Chinese Journal of Luminesecence, 2018, 39(6):855-861.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201806016 [45] 张磊, 刘东, 师途, 等.光学自由曲面面形检测技术[J].中国光学, 2017, 10(3):283-299. //www.illord.com/CN/abstract/abstract9523.shtmlZHANG L, LIU D, SHI T, et al.. Optical free-form surfaces testing technologies[J]. Chinese Optics, 2017, 10(3):283-299.(in Chinese) //www.illord.com/CN/abstract/abstract9523.shtml [46] 吕强, 李文昊, 巴音贺希格, 等.基于衍射光栅的干涉式精密位移测量系统[J].中国光学, 2017, 10(1):39-50. //www.illord.com/CN/abstract/abstract9490.shtmlLV Q, LI W H, BAYINHEXIGE, et al.. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1):39-50.(in Chinese) //www.illord.com/CN/abstract/abstract9490.shtml -