-
摘要: 钙钛矿材料不仅具有载流子扩散长度长、可调节带隙宽、光吸收效率大等优点,并且其原料储量十分丰富,沉积过程所需的形成能较低,制备工艺可兼容大面积制造技术。总之,低生产成本、高转换效率和宽应用领域等优点使钙钛矿太阳能电池可与硅基太阳能电池相媲美,在能源生产中优势十分明显。在现阶段的钙钛矿研究中,高稳定性和大制备面积是钙钛矿光伏技术的研究热点,也是亟待突破的难点。本文综述了近年来采用印刷技术制备钙钛矿太阳能电池的原料组成、工艺控制等方面的研究进展,简述并比较了各种印刷技术的优点与局限性。重点讨论了钙钛矿太阳能电池印刷制备时需要考虑的因素,并列举了对于改善钙钛矿太阳能电池薄膜性能不同制备方法的尝试,评价了对于提高器件稳定性及工业生产适用性所采取的一些策略。Abstract: Perovskite materials have the advantages of long carrier diffusion length, tunable band gap and high light absorption efficiency. Additionally, the storage of raw materials used in the production of perovskite solar cells is very rich and the formation energy required for the deposition process is low. Meanwhile, the production process is compatible with large-area manufacturing techniques. Low production cost, high conversion efficiency and wide application fields make the perovskite solar cells comparable to silicon-based solar cells. In today's perovskite research, high stability and large-area production are the research hotspots of photovoltaic technology. The research progress of the ink composition and process control of recent printing techniques are reviewed in this paper. The advantages and limitations of these methods are briefly described and compared. We focus on the factors that need to be considered in the production of perovskite solar cells, different preparation methods that can improve perovskite film quality and strategies for improving stability and applicability in industrial production.
-
Key words:
- perovskites /
- solar cells /
- printing technique
-
表 1 几种印刷制备钙钛矿太阳能电池方法比较
Table 1. Comparison of printed perovskite solar cells
-
[1] ZHANG J R, BAI D L, JIN ZH W, et al.. 3D-2D-0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability[J]. Advanced Energy Materials, 2018, 8(15):1703246. doi: 10.1002/aenm.201703246 [2] KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051. doi: 10.1021/ja809598r [3] EGGER D A, BERA A, CAHEN D, et al.. What remains unexplained about the properties of halide perovskites?[J]. Advanced Materials, 2018, 30(20):1800691. doi: 10.1002/adma.201800691 [4] YANG W S, PARK B W, JUNG E H, et al.. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345):1376-1379. doi: 10.1126/science.aan2301 [5] YOSHIKAWA K, KAWASAKI H, YOSHIDA W, et al.. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2(5):17032. doi: 10.1038/nenergy.2017.32 [6] SANCHEZ S, XIAO H, PHUNG N, et al.. Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells[J]. Advanced Energy Materials, 2018, 8(12):1702915. doi: 10.1002/aenm.201702915 [7] WILLIAMS S T, RAJAGOPAL A, CHUEH C C, et al.. Current challenges and prospective research for upscaling hybrid perovskite photovoltaics[J]. The Journal of Physical Chemistry Letters, 2016, 7(5):811-819. doi: 10.1021/acs.jpclett.5b02651 [8] ONO L K, PARK N G, ZHU K, et al.. Perovskite solar cells-towards commercialization[J]. ACS Energy Letters, 2017, 2(8):1749-1751. doi: 10.1021/acsenergylett.7b00517 [9] WHITAKER J B, KIM D H, LARSON B W, et al.. Scalable slot-die coating of high performance perovskite solar cells[J]. Sustainable Energy & Fuels, 2018, 2(11):2442-2449. https://www.researchgate.net/publication/326808360_Scalable_Slot-die_Coating_of_High_Performance_Perovskite_Solar_Cells [10] LI ZH, KLEIN T R, KIM D H, et al.. Scalable fabrication of perovskite solar cells[J]. Nature Reviews Materials, 2018, 3(4):18017. doi: 10.1038/natrevmats.2018.17 [11] CHEN H, YE F, TANG W T, et al.. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules[J]. Nature, 2017, 550(7674):92-95. doi: 10.1038/nature23877 [12] HE M, LI B, CUI X, et al.. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells[J]. Nature Communications, 2017, 8:16045. doi: 10.1038/ncomms16045 [13] KIM J H, WILLIAMS S T, CHO N, et al.. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating[J]. Advanced Energy Materials, 2015, 5(4):1401229. doi: 10.1002/aenm.201401229 [14] TANG SH, DENG Y H, ZHENG X P, et al.. Composition engineering in doctor-blading of perovskite solar cells[J]. Advanced Energy Materials, 2017, 7(18):1700302. doi: 10.1002/aenm.201700302 [15] YANG M J, LI ZH, REESE M O, et al.. Perovskite ink with wide processing window for scalable high-efficiency solar cells[J]. Nature Energy, 2017, 2(5):17038. doi: 10.1038/nenergy.2017.38 [16] RONG Y G, MING Y, JI W X, et al.. Toward industrial-scale production of perovskite solar cells:screen printing, slot-die coating, and emerging techniques[J]. The Journal of Physical Chemistry Letters, 2018, 9(10):2707-2713. doi: 10.1021/acs.jpclett.8b00912 [17] KIM Y Y, PARK E Y, YANG T Y, et al.. Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(26):12447-12454. doi: 10.1039/C8TA02868K [18] HWANG K, JUNG Y S, HEO Y J, et al.. Toward large scale roll-to-roll production of fully printed perovskite solar cells[J]. Advanced Materials, 2015, 27(7):1241-1247. doi: 10.1002/adma.201404598 [19] ZUO CH T, SCULLY A D, VAK D, et al.. Self-assembled 2D perovskite layers for efficient printable solar cells[J]. Advanced Energy Materials, 2019, 9(4):1803258. doi: 10.1002/aenm.201803258 [20] LI X, TSCHUMI M, HAN H W, et al.. Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics[J]. Energy Technology, 2015, 3(6):551-555. doi: 10.1002/ente.201500045 [21] MEI A Y, LI X, LIU L F, et al.. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194):295-298. doi: 10.1126/science.1254763 [22] MATHIES F, EGGERS H, RICHARDS B S, et al.. Inkjet-printed triple cation perovskite solar cells[J]. ACS Applied Energy Materials, 2018, 1(5):1834-1839. doi: 10.1021/acsaem.8b00222 [23] MATHIES F, ABZIEHER T, RUEDA D, et al.. Multipass inkjet printing of methylammonium lead iodide for planar perovskite solar cells(Conference Presentation)[J]. Proceedings of SPIE, 2016, 9942:994209. doi: 10.1117/12.2238163?SSO=1 [24] WEI ZH H, CHEN H N, YAN K Y, et al.. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells[J]. Angewandte Chemie International Edition, 2014, 53(48):13239-13243. doi: 10.1002/anie.201408638 [25] GAMLIEL S, DYMSHITS A, AHARON S, et al.. Micrometer sized perovskite crystals in planar hole conductor free solar cells[J]. The Journal of Physical Chemistry C, 2015, 119(34):19722-19728. doi: 10.1021/acs.jpcc.5b07554 [26] RAMESH M, BOOPATHI K M, HUANG T Y, et al.. Using an airbrush pen for layer-by-layer growth of continuous perovskite thin films for hybrid solar cells[J]. ACS Applied Materials & Interfaces, 2015, 7(4):2359-2366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2cdbd0815bae6c80fe95f113f44d3e3 [27] BARROWS A T, PEARSON A J, KWAK C K, et al.. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition[J]. Energy & Environmental Science, 2014, 7(9):2944-2950. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dcfc504ae06035b04e399af189270b4 [28] HUANG H B, SHI J J, ZHU L F, et al.. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell[J]. Nano Energy, 2016, 27:352-358. doi: 10.1016/j.nanoen.2016.07.026 [29] CHANDRASEKHAR P S, KUMAR N, KUMAR SWAMI S, et al.. Fabrication of perovskite films using an electrostatic assisted spray technique:the effect of the electric field on morphology, crystallinity and solar cell performance[J]. Nanoscale, 2016, 8(12):6792-6800. doi: 10.1039/C5NR08350H [30] ISHIHARA H, SARANG S, CHEN Y C, et al.. Nature inspiring processing route toward high throughput production of perovskite photovoltaics[J]. Journal of Materials Chemistry A, 2016, 4(18):6989-6997. doi: 10.1039/C5TA09992G [31] HONG S C, LEE G, HA K, et al.. Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system[J]. ACS Applied Materials & Interfaces, 2017, 9(9):7879-7884. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=177dd60c38729f729547756b3b26a806 [32] MOHAMAD D K, GRIFFIN J, BRACHER C, et al.. Spray-cast multilayer organometal perovskite solar cells fabricated in air[J]. Advanced Energy Materials, 2016, 6(22):1600994. doi: 10.1002/aenm.201600994 [33] QIU L B, ONO L K, QI Y B. Advances and challenges to the commercialization of organic-inorganic halide perovskite solar cell technology[J]. Materials Today Energy, 2018, 7:169-189. doi: 10.1016/j.mtener.2017.09.008 [34] WU W Q, WANG Q, FANG Y J, et al.. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells[J]. Nature Communications, 2018, 9(1):1625. doi: 10.1038/s41467-018-04028-8 [35] CHO A N, PARK N G. Impact of interfacial layers in perovskite solar cells[J]. ChemSusChem, 2017, 10(19):3687-3704. doi: 10.1002/cssc.201701095 [36] YANG ZH B, CHUEH C C, ZUO F, et al.. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition[J]. Advanced Energy Materials, 2015, 5(13):1500328. doi: 10.1002/aenm.201500328 [37] BACK H, KIM J, KIM G, et al.. Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating[J]. Solar Energy Materials and Solar Cells, 2016, 144:309-315. doi: 10.1016/j.solmat.2015.09.018 [38] ZHANG Y M, ZHAO J H, ZHANG J, et al.. Interface engineering based on liquid metal for compact-layer-free, fully printable mesoscopic perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(18):15616-15623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=925cd7c8aa3687d801ffa57978e42266 [39] LI SH G, JIANG K J, SU M J, et al.. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17):9092-9097. doi: 10.1039/C4TA05675B [40] PARK S M, NOH Y J, JIN S H, et al.. Efficient planar heterojunction perovskite solar cells fabricated via roller-coating[J]. Solar Energy Materials and Solar Cells, 2016, 155:14-19. doi: 10.1016/j.solmat.2016.04.059 [41] LEE D, JUNG Y S, HEO Y J, et al.. Slot-die coated perovskite films using mixed lead precursors for highly reproducible and large-area solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(18):16133-16139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b259cfb798c34cfd70d17a2df87cf1f4 [42] PENG Y Y, CHENG Y D, WANG CH H, et al.. Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition[J]. Organic Electronics, 2018, 58:153-158. doi: 10.1016/j.orgel.2018.04.020 [43] DENG Y H, PENG E, SHAO Y CH, et al.. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy & Environmental Science, 2015, 8(5):1544-1550. http://cn.bing.com/academic/profile?id=46a41ed2eacdea88cfebc21ee462f520&encoded=0&v=paper_preview&mkt=zh-cn [44] RAZZA S, DI GIACOMO F, MATTEOCCI F, et al.. Perovskite solar cells and large area modules(100 cm2) based on an air flow-assisted PbI2 blade coating deposition process[J]. Journal of Power Sources, 2015, 277:286-291. doi: 10.1016/j.jpowsour.2014.12.008 [45] DENG Y H, WANG Q, YUAN Y B, et al.. Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures[J]. Materials Horizons, 2015, 2(6):578-583. doi: 10.1039/C5MH00126A [46] JEONG B, HWANG I, CHO S H, et al.. Solvent-assisted gel printing for micropatterning thin organic-inorganic hybrid perovskite films[J]. ACS Nano, 2016, 10(9):9026-9035. doi: 10.1021/acsnano.6b05478 [47] HU Q, WU H, SUN J, et al.. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading[J]. Nanoscale, 2016, 8(9):5350-5357. doi: 10.1039/C5NR08277C [48] MA Y CH, LEE J, LIU Y L, et al.. Synchronized-pressing fabrication of cost-efficient crystalline perovskite solar cells via intermediate engineering[J]. Nanoscale, 2018, 10(20):9628-9633. doi: 10.1039/C8NR01717D [49] ZHONG Y F, MUNIR R, LI J B, et al.. Blade-coated hybrid perovskite solar cells with efficiency >17%:an in situ investigation[J]. ACS Energy Letters, 2018, 3(5):1078-1085. doi: 10.1021/acsenergylett.8b00428 [50] SCHMIDT T M, LARSEN-OLSEN T T, CARLō J E, et al.. Upscaling of perovskite solar cells:fully ambient roll processing of flexible perovskite solar cells with printed back electrodes[J]. Advanced Energy Materials, 2015, 5(15):1500569. doi: 10.1002/aenm.201500569 [51] BINEK A, PETRUS M L, HUBER N, et al.. Recycling perovskite solar cells to avoid lead waste[J]. ACS Applied Materials & Interfaces, 2016, 8(20):12881-12886. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b30f085b04da2b064a475a6221f5a649 [52] NOEL N K, ABISREUTINGER S N, WENGER B, et al.. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films[J]. Energy & Environmental Science, 2017, 10(1):145-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=012f1d503d2231a72cce5d073eb0c45f -