Citation: | REN Sheng, LIU Li-wei, LI Jin-hua, HU Si-yi, REN Yu, WANG Yue, XIU Jing-rui. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1): 31-46. doi: 10.3788/CO.20181101.0031 |
[1] |
ZIELINSKI M, WINTER S, KOLKOWSKI R, et al.. Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures[J]. Opt. Express, 2011, 19(7):6657-6670. doi: 10.1364/OE.19.006657
|
[2] |
WANG SH W, QIAN J, HE S L, et al.. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging[J]. Ivyspring. Theranostics, 2015, 5(3):251-266. doi: 10.7150/thno.10396
|
[3] |
ZHUANG Z Y, YANG Q, ZHANG Z M, et al.. A highly selective fluorescent probe for hydrogen peroxide and its applications in living cells[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 344:8-14. doi: 10.1016/j.jphotochem.2017.04.009
|
[4] |
MANDAL K, JANA D, GHORAI B, et al.. Fluorescent imaging probe from nanoparticle made of aie molecule[J]. Phys. Chem. C, 2016, 120(9):5196-5206. doi: 10.1021/acs.jpcc.5b12682
|
[5] |
XU Q, HEO CH, JIN A K, et al.. A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria[J]. Anal. Chem., 2016, 88(12):6615-6620. doi: 10.1021/acs.analchem.6b01738
|
[6] |
KAURANEN M, ZAYATS A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11):737-748. doi: 10.1038/nphoton.2012.244
|
[7] |
JASSIM N M, WANG K, HAN X, et al.. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires[J]. Optical Materials, 2017, 64:257-261. doi: 10.1016/j.optmat.2016.11.034
|
[8] |
王马华, 朱光平, 居勇峰, 等.纳米氧化锌中三光子吸收与倍频效应致光辐射特性[J].发光学报, 2015, 36(6):617-622. http://www.opticsjournal.net/Abstract.htm?id=OJ150625000093iOlRnU
WANG M H, ZHU G P, JU Y F, et al.. Emission characteristics of crown-like ZnO nanocrystals induced by three-photon absorption and second harmonic generation effect[J]. Chinese J. Luminescence, 2015, 36(6):617-622.(in Chinese) http://www.opticsjournal.net/Abstract.htm?id=OJ150625000093iOlRnU
|
[9] |
朱华, 颜振东, 詹鹏, 等.局域表面等离激元诱导的三次谐波增强效应[J].物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
ZHU H, YAN ZH D, ZHAN P, et al.. Third harmonic generation enhancement effect induced by local surface plasmon[J]. Acta Phys. Sin., 2013, 62(17):178104.(in Chinese) doi: 10.7498/aps.62.178104
|
[10] |
W YE, W ZHANG, S WANG, et al.. Effect of sapphire substrate on the localized surface plasmon resonance of aluminum triangular nanoparticles[J]. Optics Communications, 2017, 395:175-182. doi: 10.1016/j.optcom.2016.01.089
|
[11] |
KUMAR A, DIXIT T, PALANI I A, et al.. Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 93:97-104. doi: 10.1016/j.physe.2017.06.005
|
[12] |
AGHLARA H, ROSTAMI R, MAGHOUL A, et al.. Noble metal nanoparticle surface plasmon resonance in absorbing medium[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(4):417-420. doi: 10.1016/j.ijleo.2013.12.089
|
[13] |
SAFONOV A L, SULYAEVA V S, TIMOSHENKO N I, et al.. Deposition of thin composite films consisting of fluoropolymer and silver nanoparticles having surface plasmon resonance[J]. Thin Solid Films, 2016, 603:313-316. doi: 10.1016/j.tsf.2016.02.030
|
[14] |
YAN L, YAN Y, XU L, et al. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology[J]. Applied Surface Science, 2016, 367:563-568. doi: 10.1016/j.apsusc.2016.01.238
|
[15] |
薛彬, 孔祥贵, 王丹, 等.785 nm金宝搏188软件怎么用
诱导银纳米三角片聚集表面增强拉曼散射效应[J].中国光学, 2014, 7(1):118-123. //www.illord.com/CN/abstract/abstract9104.shtml
XUE B, KONG X G, WANG D, et al.. SERS effect of aggregation of silver nanoprisms induced by 785 nm laser[J]. Chinese Optics, 2014, 7(1):118-123.(in Chinese) //www.illord.com/CN/abstract/abstract9104.shtml
|
[16] |
封昭, 周骏, 陈栋, 等.基于金/银纳米三明治结构SERS特性的超灵敏前列腺特异性抗原检测[J].发光学报, 2015, 36(9):1064-1070. http://www.opticsjournal.net/Abstract.htm?id=OJ151022000066C0FbIe
FENG ZH, ZHOU J, CHEN D, et al.. Hypersensitization immunoassay of prostate-specific antigen based on SERS of sandwich-type Au/Ag nanostructure[J]. Chinese J. Luminescence, 2015, 36(9):1064-1070.(in Chinese) http://www.opticsjournal.net/Abstract.htm?id=OJ151022000066C0FbIe
|
[17] |
李晓坤, 张友林, 孔祥贵.Ag纳米粒子聚集体的SiO2包覆及其SERS效应[J].发光学报, 2014, 35(7):853-857. http://www.opticsjournal.net/abstract.htm?id=OJ140218000123B9EbHd
LI X K, ZHANG Y L, KONG X G. Aggregation of Ag nanoparticles coated with silica and its SERS effect[J]. Chinese J. Luminescence, 2014, 35(7):853-857.(in Chinese) http://www.opticsjournal.net/abstract.htm?id=OJ140218000123B9EbHd
|
[18] |
SÖNNICHSEN C, ALIVISATOS A. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy[J]. Nano Lett., 2005, 5(2):301-304. doi: 10.1021/nl048089k
|
[19] |
MURPHY C J, SAU T K, GOLE A M, et al.. Anisotropic metal nanoparticles:synthesis, assembly, and optical applications[J]. Phys. Chem. B, 2005, 109(29):13857-13870. doi: 10.1021/jp0516846
|
[20] |
JIA K, YUAN L, ZHOU X, et al.. One-pot synthesis of Au/Ag bimetallic nanoparticles to modulate the emission of CdSe/CdS quantum dots[J]. RSC Adv., 2015, 5:58163-58170. doi: 10.1039/C5RA08933F
|
[21] |
ZHU J, CHANG H, LI J J, et al.. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury(Ⅱ)[J]. Molecular and Biomolecular Spectroscopy, 2017. http://www.ncbi.nlm.nih.gov/pubmed/28709143
|
[22] |
ZHANG R, ZHOU Y, PENG L, et al.. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2core-shell structures[J]. Scientific Reports, 2016, 6:25036. doi: 10.1038/srep25036
|
[23] |
ZHU J, REN Y, ZHAO S, et al.. The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell[J]. Materials Chemistry and Physics, 2012, 133(2-3):1060-1065. doi: 10.1016/j.matchemphys.2012.02.016
|
[24] |
JIANG N, DMITRY KUROUSKI, POZZI E A, et al.. Tip-enhanced Raman spectroscopy:from concepts to practical applications[J]. Chemical Physics Letters, 2016, 659:16-24. doi: 10.1016/j.cplett.2016.06.035
|
[25] |
GAURAV SHARMA, VOLKER DECKERT, et al.. Tip-enhanced Raman scattering-Targeting structure-specific surface characterization for biomedical samples[J]. Advanced Drug Delivery Reviews, 2015, 89:42-56. doi: 10.1016/j.addr.2015.06.007
|
[26] |
JUNG Y, CHEN H, TONG L, et al.. Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing[J]. Journal of Physical Chemistry C, 2009, 113(7):2657-2663. doi: 10.1021/jp810852c
|
[27] |
MVLLER M, KRAVTSOV V, PAARMANN A, et al.. A nanofocused plasmon-driven sub-10 femtosecond electron point source[J]. ACS Photonics, 2016, 3(4):611-619. doi: 10.1021/acsphotonics.5b00710
|
[28] |
KRAVTSOV V, ULBRICHT R, ATKIN J M, et al.. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging[J]. Nature Nanotechnology, 2016, 11(5):459-464. doi: 10.1038/nnano.2015.336
|
[29] |
SHALIN A S, SUKHOV S V, KRASNUK A E, et al.. Plasmonic nanostructures for local field enhancement in the UV region[J]. Photonics and Nanostructures-Fundamentals and Applications, 2014, 12(1):2-8. https://www.sciencedirect.com/science/article/pii/S1569441013000709
|
[30] |
ZHENG G, M HLENBERND H, KENEY M, et al.. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308-312. doi: 10.1038/nnano.2015.2
|
[31] |
JIN B, ARGYROPOULOS C. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces[J]. Scientific Reports, 2016, 6:28746. doi: 10.1038/srep28746
|
[32] |
SCHMIDT R, SLOBOZHANYUK A, BELOV P, et al.. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging[J]. Scientific Reports, 2017, 7:1678. doi: 10.1038/s41598-017-01932-9
|
[33] |
JE SIPE, RW BOYD, Nanocomposite materials for nonlinear optics based on local field effects[J]. Springer Berlin Heidelberg, 2002, 82(4):1-19. http://www.springerlink.com/content/jrm27m1h4magmky0
|
[34] |
RW BOYD, JE SIPE, et al.. Nonlinear optical properties of nanocomposite materials[J]. Pure & Applied Optics Journal of the European Optical Society Part A, 1996, 5(5):505. https://www.researchgate.net/profile/Robert_Boyd4/publication/231132905_Nonlinear_optical_properties_of_nanocomposite_materials/links/542d5df00cf29bbc126d2b16.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
|
[35] |
GHIMIRE S, DICHIARA A D, SISTRUNK E, et al.. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2011, 7(2):138-141. doi: 10.1038/nphys1847
|
[36] |
HAN S, KIM H, YONG W K, et al.. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure[J]. Nature Communications, 2016, 7:13105. doi: 10.1038/ncomms13105
|
[37] |
VAMPA G, GHAMSARI B G, HAMMOND T J, et al.. Plasmon-enhanced high-harmonic generation from silicon[J]. Nature Physics, 2017, 13:659-662. doi: 10.1038/nphys4087
|
[38] |
帕拉斯·N·普拉萨德.纳米光子学[M].西安:西安交通大学出版社, 2010.
PARAS N. PRASAD. Nanophotonics[M]. Xi'an:Xi'an Jiaotong University Press, 2010.
|
[39] |
ZHU W, ESTEBAN R, BORISOV A G, et al.. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications, 2016, 7:11495. doi: 10.1038/ncomms11495
|