Citation: | FU Jiang-liang, GAN Qing-bo, ZHANG Yang, ZHAO Ke-xin, YUAN Hong. Design and trade-off study of proof masses for future spatial drag-free missions[J]. Chinese Optics, 2019, 12(3): 463-476. doi: 10.3788/CO.20191203.0463 |
[1] |
CONKLIN J W, BALAKRISHNAN K, BUCHMAN S, et al.. The drag-free CubeSat[C]. Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, AIAA, 2012.
|
[2] |
罗子人, 白姗, 边星, 等.空间金宝搏188软件怎么用
干涉引力波探测[J].力学进展, 2013, 43(4):415-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201304003
LUO Z R, BAI SH, BIAN X, et al.. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4):415-447.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201304003
|
[3] |
SUMNER T J. The STEP and GAUGE missions[J]. Space Science Reviews, 2009, 148(1-4):475-487. doi: 10.1007/s11214-009-9558-x
|
[4] |
EVERITT C W F, DEBRA D B, PARKINSON B W, et al.. Gravity Probe B:final results of a space experiment to test general relativity[J]. Physical Review Letters, 2011, 106(22):221101. doi: 10.1103/PhysRevLett.106.221101
|
[5] |
CIUFOLINI I, PAOLOZZI A, PAVLIS E C, et al.. A test of general relativity using the LARES and LAGEOS satellites and a GRACE earth gravity model[J]. The European Physical Journal C, 2016, 76(3):120. doi: 10.1140/epjc/s10052-016-3961-8
|
[6] |
REIGBER C, LVHR H, SCHWINTZER P. CHAMP mission status[J]. Advances in Space Research, 2002, 30(2):129-134. doi: 10.1016/S0273-1177(02)00276-4
|
[7] |
CHRISTOPHE B, BOULANGER D, FOULON B, et al.. A new generation of ultra-sensitive electrostatic accelerometers for GRACE Follow-on and towards the next generation gravity missions[J]. Acta Astronautica, 2015, 117:1-7. doi: 10.1016/j.actaastro.2015.06.021
|
[8] |
DRINKWATER M R, FLOBERGHAGEN R, HAAGMANS R, et al.. VⅡ:CLOSING SESSION:GOCE: ESA's first earth explorer core mission[J]. Space Science Reviews, 2003, 108(1-2):419-432. http://d.old.wanfangdata.com.cn/Periodical/xmdxxb201606005
|
[9] |
BENDER P, BRILLET A, CIUFOLINI I, et al.. LISA pre-phase A report[R]. Hannover: LISA Study Team, 1998.
|
[10] |
LANGE B. Drag-free performance in a LISA mission with spherical proof masses[J]. Classical and Quantum Gravity, 2002, 19(7):1739-1743. doi: 10.1088/0264-9381/19/7/369
|
[11] |
LANGE B. Preliminary studies of spherical proof masses in LISA drag-free satellites[J]. Proceedings of SPIE, 2003, 4856:107-115. doi: 10.1117/12.458562
|
[12] |
CONNES A, DAMOUR T, FAYET P. A spherical gravitational monopoles[J]. Nuclear Physics B, 1997, 490(1-2):391-431. doi: 10.1016/S0550-3213(97)00041-2
|
[13] |
SUMNER T J, ANDERSON J, BLASER J P, et al.. STEP(satellite test of the equivalence principle)[J]. Advances in Space Research, 2007, 39(2):254-258. doi: 10.1016/j.asr.2006.09.019
|
[14] |
TOUBOUL P, RODRIGUES M, MÉTRIS G, et al.. MICROSCOPE, testing the equivalence principle in space[J]. Comptes Rendus de l'Académie des Sciences-Series IV-Physics, 2001, 2(9):1271-1286. doi: 10.1016/S1296-2147(01)01264-1
|
[15] |
NOBILI A M, COMANDI G L, DORAVARI S, et al.. "Galileo Galilei"(GG) a small satellite to test the equivalence principle of Galileo, Newton and Einstein[J]. Experimental Astronomy, 2009, 23(2):689-710. doi: 10.1007/s10686-008-9128-3
|
[16] |
罗子人, 钟敏, 边星, 等.地球重力场空间探测:回顾与展望[J].力学进展, 2014, 44:201408. doi: 10.6052/1000-0992-14-047
LUO Z R, ZHONG M, BIAN X, et al.. Mapping earth's gravity in space:review and future perspective[J]. Advances in Mechanics, 2014, 44:201408.(in Chinese) doi: 10.6052/1000-0992-14-047
|
[17] |
SWANK A J. Gravitational mass attraction measurement for drag-free references[D]. Palo Alto: Stanford University, 2009.
|
[18] |
Staff of the Space Department, Staff of the Guidance, Control Laboratory. A satellite freed of all but gravitational forces:"TRIAD I"[J]. Journal of Spacecraft and Rockets, 1974, 11(9):637-644. doi: 10.2514/3.62146
|
[19] |
BENCZE W J, BRUMLEY R W, EGLINGTON M L, et al.. The Gravity Probe B electrostatic gyroscope suspension system GSS)[J]. Classical and Quantum Gravity, 2015, 32(22):224005. doi: 10.1088/0264-9381/32/22/224005
|
[20] |
RACCA G D, MCNAMARA P W. The LISA pathfinder mission[J]. Space Science Reviews, 2010, 151(1-3):159-181. doi: 10.1007/s11214-009-9602-x
|
[21] |
LOCKERBIE N A, XU X, VERYASKIN A V, et al.. Optimization of immunity to helium tidal influences for the STEP experiment test masses[J]. Classical and Quantum Gravity, 1994, 11(6):1575-1590. doi: 10.1088/0264-9381/11/6/021
|
[22] |
LOCKERBIEN A, XU X, VERYASKIN A V. The gravitational coupling between longitudinal segments of a hollow cylinder and an arbitrary gravitational source:relevance to the STEP experiment[J]. Classical and Quantum Gravity, 1996, 13(8):2041-2059. doi: 10.1088/0264-9381/13/8/004
|
[23] |
CONKLIN J W, ALLEN G, SUN K X, et al.. Determination of spherical test mass kinematics with modular gravitational reference sensor[J]. Journal of Guidance Control and Dynamics, 2008, 31(6):1700-1707. doi: 10.2514/1.34230
|
[24] |
DOLPHIN M D M. Polhode dynamics and gyroscope asymmetry analysis on Gravity Probe B using gyroscope position data[D]. Palo Alto: Stanford University, 2007.
|
[25] |
CONKLIN J W. Estimation of the mass center and dynamics of aspherical test mass for gravitational reference sensors[D]. Palo Alto: Stanford University, 2008.
|
[26] |
BLASER J P. Test mass material selection for equivalence principle experiments[J]. Classical and Quantum Gravity, 2001, 18(13):2515-2520. doi: 10.1088/0264-9381/18/13/314
|
[27] |
DANZMANN K, RVDIGER A. LISA technology-concept, status, prospects[J]. Classical and Quantum Gravity, 2003, 20(10):S1-S9. doi: 10.1088/0264-9381/20/10/301
|
[28] |
SWANSON P N, EVERITT C W F, LEE M C. The NASA/ESA MiniSTEP project[J]. Advances in Space Research, 2003, 32(7):1373-1377. doi: 10.1016/S0273-1177(03)90348-6
|
[29] |
OVERDUIN J, EVERITT F, MESTER J, et al.. The science case for STEP[J]. Advances in Space Research, 2009, 43(10):1532-1537. doi: 10.1016/j.asr.2009.02.012
|
[30] |
TOUBOUL P, MÉTRIS G, RODRIGUES M, et al.. MICROSCOPE mission:first results of a space test of the equivalence principle[J]. Physical Review Letters, 2017, 119(23):231101. doi: 10.1103/PhysRevLett.119.231101
|
[31] |
SCHUMAKER B L. Disturbance reduction requirements for LISA[J]. Classical and Quantum Gravity, 2003, 20(10):S239-S253. doi: 10.1088/0264-9381/20/10/327
|
[32] |
ZANONI C, ALFAUWAZ A, ALJADAAN A, et al.. The design of a drag-free CubeSat and the housing for its gravitational reference sensor[C]. Proceedings of the 2nd IAA Conference on University Satellites Missions and CubeSat Workshop, IAA, 2013.
|
[33] |
ALLEN G S. Optical sensor design for advanced drag-free satellites[D]. Palo Alto: Stanford University, 2009.
|
[34] |
BALAKRISHNAN K, SUN K X, ALFAUWAZ A, et al.. UV LED charge control of an electrically isolated proof mass in a gravitational reference sensor configuration at 255 nm[C]. Proceedings of the Latin America Optics and Photonics Conference 2014, OSA, 2014.
|
[35] |
LIPA J A, KEISER G M. The Stanford Relativity Gyroscope Experiment(B):Gyroscope Development[M]. New York:W. H. Freeman and Co., 1988, 1:587-699.
|
[36] |
AMARO-SEOANE P, AUDLEY H, BABAK S, et al.. Laser interferometer space antenna[J]. Tp.umu.se, 2017, 548(3):411. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225103032/
|
[37] |
BUCHMAN S, CONKLIN J W, BALAKRISHNAN K, et al.. LAGRANGE: laser gravitational-wave antenna in geodetic orbit[C]. Proceedings of the 9th LISA Symposium, LISA, 2012.
|
[38] |
ANDO M, KAWAMURA S, SETO N, et al.. DECIGO and DECIGO pathfinder[J]. Classical and Quantum Gravity, 2010, 27(8):084010. doi: 10.1088/0264-9381/27/8/084010
|
[39] |
HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5):685-686. doi: 10.1093/nsr/nwx116
|
[40] |
LUO J, CHEN L SH, DUAN H Z, et al.. Tianqin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3):035010. doi: 10.1088/0264-9381/33/3/035010
|
[41] |
CROWDER J, CORNISH N J. Beyond LISA:exploring future gravitational wave missions[J]. Physical Review D, 2005, 72(8):083005. doi: 10.1103/PhysRevD.72.083005
|
[42] |
SUN K X, BUCHMAN S, BYER R, et al.. Modular gravitational reference sensor development[J]. Journal of Physics:Conference Series, 2009, 154(1):012026. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001528214
|
[43] |
GERARDI D, ALLEN G, CONKLIN J W, et al.. Invited article: advanced drag-free concepts for future space-based interferometers:acceleration noise performance[J]. Review of Scientific Instruments, 2014, 85(1):011301. doi: 10.1063/1.4862199
|
[44] |
TOUBOUL P, MÉTRIS G, SÉLIG H, et al.. Gravitation and geodesy with inertial sensors, from ground to space[J]. Aerospace Lab Journal, 2016(12):AL12-11. http://cn.bing.com/academic/profile?id=d6f2cd51d4d1251f9756ff701510ac9a&encoded=0&v=paper_preview&mkt=zh-cn
|
[45] |
DEBRA D B. Drag-free spacecraft as platforms for space missions and fundamental physics[J]. Classical and Quantum Gravity, 1997, 14(6):1549-1555. doi: 10.1088/0264-9381/14/6/026
|
[46] |
BUCHMAN S, EVERITT C W F, PARKINSON B, et al.. Gyroscopes and charge control for the relativity mission Gravity Probe B[J]. Advances in Space Research, 2000, 25(6):1181-1184. doi: 10.1016/S0273-1177(99)00983-7
|