-
摘要: 为解决目前大多数紫外成像仪存在的定位和指向精度差、色差较大、分辨率及光能利用率不足等问题,设计了一款高分辨率的大孔径消色差紫外光学系统。首先,根据电晕放电检测的应用需求,提出了紫外光学系统的总体设计。然后利用熔石英及氟化钙两种材料的不同色散特性,根据改进的双胶合透镜结构设计了一款大孔径的消色差紫外光学系统,并对该系统进行了公差分析。设计的紫外光学系统在全视场全探测范围内点列图均方根直径 < 0.08 mm,分辨率为20 lp/mm,满足电力行业中对电晕探测的需求。Abstract: In order to solve the problems such as the deficiency of positioning and pointing accuracy, large chromatic aberration, insufficient resolution and energy utilization efficiency, a high-resolution large aperture achromatic UV optical system is designed. First, based on the application requirements of corona discharge detection, the overall design requirements of UV optical system are proposed. Then, using the different dispersion characteristics of both fused silica and calcium fluoride, a large aperture achromatic UV optical system is designed according to the improved double-cemented lens structure, and the tolerance analysis of the system is carried out. The results show that the ultraviolet optical system designed in this paper has a dot-matrix root mean square diameter less than 0.08 mm and a resolution of 20 lp/mm within the full field of view, which meets the requirements of the power industry for corona detection.
-
Key words:
- corona detection /
- ultraviolet camera /
- optical system /
- large aperture /
- achromatic
-
表 1 紫外成像仪通用技术指标
Table 1. General technical index of ultraviolet camera
探测距离/m 角分辨率/(°) 视场角/(°) 3~无穷远 ≤0.1 ≥6 表 2 紫外光学系统的优选设计指标
Table 2. Preferred design index of ultraviolet optical system
工作谱段/nm 240~280 通光孔径/mm 50 工作距离/m 3~无穷远 视场角/(°) ≤10 焦距/mm ≈100 弥散斑半径/mm ≤0.175 表 3 紫外光学系统设计结果
Table 3. Design results of ultraviolet optical system
面 曲率半径/mm 厚度/间隔 材料 通光口径/mm 光阑 55.833 9 15.327 6 氟化钙 50.098 9 2 -48.895 5 0.171 3 50.801 2 3 -48.278 1 3.000 0 熔石英 50.685 9 4 -706.347 2 0.100 0 49.228 1 5 35.386 8 15.488 7 氟化钙 46.787 0 6 -57.736 0.100 3 45.416 1 7 -57.555 5 3.000 0 熔石英 44.785 6 8 55.226 6 5.921 3 37.784 4 9 26.369 9 5.687 5 氟化钙 32.777 7 10 16.284 4 36.193 4 26.673 4 表 4 最终制定的紫外光学系统公差
Table 4. Final ultraviolet optical system tolerance
表面 元件加工公差 装配公差 面形公差pv(λ) 半径公差(N) 厚度公差/mm 元件楔形/mm 间隔公差/mm 偏心公差/mm 倾斜公差/(′) 1 0.25 2 0.05 0.05 0.05 2 2 0.25 2 0.05 3 0.25 2 0.05 0.05 0.05 2 4 0.25 2 0.05 5 0.25 2 0.05 0.05 0.05 2 6 0.25 2 0.05 7 0.25 2 0.05 0.05 0.05 2 8 0.25 2 0.05 9 0.25 2 0.05 0.05 0.05 2 10 0.25 2 焦距调节 表 5 公差分析结果
Table 5. Results of tolerance analysis
点列图均方根直径最佳值/mm 0.072 432 995 点列图均方根直径最差值/mm 0.105 281 321 点列图均方根直径平均值/mm 0.080 668 826 90%均方根直径最大值/mm 0.087 272 107 前焦距补偿量/mm 0.101 205 后焦距补偿量/mm 0.065 814 -
[1] 刘尚合, 朱利, 魏明, 等.电晕放电辐射信号远距离探测技术研究[J].高电压技术, 2013, 39(12):2845-2851. doi: 10.3969/j.issn.1003-6520.2013.12.001LIU SH H, ZHU L, WEI M, et al.. Research on long-range detection technology for corona discharge radiation signal[J]. High Voltage Engineering, 2013, 39(12):2845-2851.(in Chinese) doi: 10.3969/j.issn.1003-6520.2013.12.001 [2] 万保权, 谢辉春, 樊亮, 等.特高压变电站的电磁环境及电晕控制措施[J].高电压技术, 2010, 36(1):109-115. http://d.wanfangdata.com.cn/Periodical_gdyjs201001018.aspxWAN B Q, XIE H CH, FAN L, et al.. Electromagnetic environment and corona control measures of UHV substation[J]. High Voltage Engineering, 2010, 36(1):109-115.(in Chinese) http://d.wanfangdata.com.cn/Periodical_gdyjs201001018.aspx [3] 张乔根, 王清亮, 张璐, 等.污秽条件下±800KV直流输电线路电晕特性[J].高电压技术, 2010, 36(1):31-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201001006ZHANG Q G, WANG Q L, ZHANG L, et al.. Corona characteristics of ±800 kV UHV DC polluted transmission lines[J]. High Voltage Engineering, 2010, 36(1):31-36.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201001006 [4] 孟晓波, 卞星明, 陈枫林, 等.负直流下绞线电晕起始电压分析[J].高电压技术, 2011, 37(1):77-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201101012MENG X B, BIAN X M, CHEN F L, et al.. Analysis on negative DC corona inception voltage of stranded conductors[J]. High Voltage Engineering, 2011, 37(1):77-84.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201101012 [5] 陈澜, 卞星明, 陈枫林, 等.电晕笼内导线交流电电晕起始电压判断方法[J].高电压技术, 2011, 37(1):85-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201101013CHEN L, BIAN X M, CHEN F L, et al.. Method to judge corona inception voltage of AC transmission lines using corona cage[J]. High Voltage Engineering, 2011, 37(1):85-90.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201101013 [6] 张海峰, 庞其昌, 陈秀春.高压电晕放电特征及其检测[J].电测与仪表, 2006, 43(2):6-8. http://www.doc88.com/p-517795312784.htmlZHANG H F, PANG Q CH, CHEN X CH. The characteristics of high-voltage corona and its detection[J]. Electrical Measurement & Instrumentation, 2006, 43(2):6-8.(in Chinese) http://www.doc88.com/p-517795312784.html [7] 周影, 娄洪伟, 周跃, 等.微弱日盲紫外电晕自动实时检测方法[J].中国光学, 2015, 8(6):926-932. //www.illord.com/CN/abstract/abstract9364.shtmlZHOU Y, LOU H W, ZHOU Y, et al.. Automatic real-time detection method of faint solar-blind ultraviolet corona[J]. Chinese Optics, 2015, 8(6):926-932.(in Chinese) //www.illord.com/CN/abstract/abstract9364.shtml [8] WILCOX P G, SAFRONOVA A S, KANTSYREV V L, et al.. Extreme ultraviolet spectroscopy of low-Zion plasmas for fusion applications[J]. Review of Scientific Instruments, 2008, 79(10):10F543 doi: 10.1063/1.2956745 [9] 崔穆涵. 日盲紫外像增强器与ICCD的参量测试与辐射标定[D]. 北京: 中国科学院大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3056088CUI M H. Calibration of the solar-Blind UV image intensifier and intensified CCD[D]. Beijing: University of Chinese Academy of Sciences, 2016. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3056088 [10] MCCLEMENTS K G, HARRISON R A, ALEXANDER D. The detection of wave activity in the solar corona using UV line spectra[J]. Solar Physics, 1991, 131(1):41-48. doi: 10.1007/BF00151742 [11] PINNANGUDI B, GORUR R S, KROESE A J. Quantification of corona discharges on nonceramic insulators[J]. Dielectrics and Electrical Insulation, IEEE Transactions on, 2005, 12(3):513-523. doi: 10.1109/TDEI.2005.1453456 [12] 姚明辉.紫外CCD在电晕检测系统中的应用[J].科学技术与工程, 2007, 7(7):1320-1322. http://www.cnki.com.cn/Article/CJFDTotal-HLKX201429072.htmYAO M H. Application of UV-CCD to corona detecting system[J]. Science Technology and Engineering, 2007, 7(7):1320-1322.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-HLKX201429072.htm [13] 张学军, 樊延超, 鲍赫, 等.超大口径空间光学遥感器的应用和发展[J].光学精密工程, 2016, 24(11):2614-2626. https://www.cnki.com.cn/qikan-KJDZ201602005.htmlZHANG X J, FAN Y CH, BAO H, et al.. Applications and development of ultra large aperture space optical remote sensors[J]. Opt. Precision Eng., 2016, 24(11):2614-2626.(in Chinese) https://www.cnki.com.cn/qikan-KJDZ201602005.html [14] 杨晋, 张锐, 潘明忠, 等.大孔径面视场PG成像光谱仪的光学设计[J].光学精密工程, 2017, 25(4):335-342. http://www.eope.net/gxjmgc/CN/abstract/abstract16968.shtmlYANG J, ZHANG R, PAN M ZH, et al.. Optical design of PG imaging spectrometer with large aperture and surface field[J]. Opt. Precision Eng., 2017, 25(4):335-342.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract16968.shtml [15] 张春雷, 徐乐, 刘健, 等.全频段亚纳米精度氟化钙材料加工[J].光学精密工程, 2016, 24(11):2636-2642. http://www.eope.net/gxjmgc/CN/abstract/abstract16753.shtmlZHANG CH L, XU L, LIU J, et al.. Sub-nanometer precision optical fabrication of CaF2 materials[J]. Opt. Precision Eng., 2016, 24(11):2614-2626.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract16753.shtml -