-
摘要: 利用自行研制的双向反射分布函数(BRDF)测量装置测量了可见光波段紫铜表面的面内光谱BRDF。分析了波长、入射天顶角、表面粗糙度等因素对测量结果的影响。结果表明:(1)BRDF随波长的变化主要受样品表面颜色的影响,与入射和反射角度无关;(2)入射天顶角对测量结果有明显的影响,主要归结于角度因子和反射强度随入射天顶角的变化;(3)粗糙度对测量结果也有明显的影响,随着粗糙度的增加,样品在镜面反射方向的反射减弱,在其它方向的反射增强。另外,分别采用不同的分布函数对测量结果进行了拟合,结果表明,采用Lorentz分布能够得到更好的拟合结果。Abstract: In this paper, the in-plane spectral bidirectional reflectance distribution function(BRDF) of red copper surfaces in the waveband of visible light was measured using a self-developed measuring device. The influences of wavelength, incident zenith angle and surface roughness on the measurement results were analyzed in detail. The results show that the BRDF curve versus wavelength is mainly affected by the color of the sample surface and is not affected by the incident and reflected angle; the incident zenith angle has obvious influence on the measurement results, which can be attributed to angle factor and the change of reflectance intensity varying with incident zenith; and roughness has a significant impact on the measurement results. With an increase of roughness, the reflection near the mirror's direction is weakened, while the reflection in the other directions is strengthened. In addition, Gauss and Lorentz distribution functions are used to fit the measurement data and the fitting results are incoordance with Lorentz distribution.
-
Key words:
- spectral BRDF /
- red copper /
- absolute measuring method /
- roughness
-
表 1 转臂和转台的转动范围
Table 1. The rotation ranges of the tumblers and turntables
TAB1 TAB2 ARM1 ARM2 0°~360° 0°~180° -90°~90° -90°~90° 表 2 4个样品表面的粗糙度
Table 2. Roughness values of the 4 samples surface
Ra/μm Rq/μm Rz/μm 1# 0.219 0.312 1.688 2# 0.192 0.261 1.539 3# 0.119 0.162 0.972 4# 0.072 0.086 0.431 -
[1] NICODEMUSF E. Directional reflectance and emissivity of an opaque surface[J]. Applied Optics, 1965, 4(7):767-775. doi: 10.1364/AO.4.000767 [2] BETTYCL, FUNGA K, IRONS J. The measured polarized bidirectional reflectance distribution function of a spectralon calibration target[C]. 1996 International Geoscience and Remote Sensing Symposium, IEEE, 1996. [3] 杨琛, 潘永强.三层宽带减反射膜散射特性研究[J].光学与光电技术, 2018, 16(1):11-15. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201801003YANG CH, PAN Y Q. Light scattering properties of three layers broadband anti-reflective films[J]. Optics & Optoelectronic Technology, 2018, 16(1):11-15.(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201801003 [4] 王璐璐, 高爱华, 刘卫国, 等.基于LabVIEW的角分辨空间金宝搏188软件怎么用 散射测量系统[J].光学与光电技术, 2018, 16(3):40-45. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201803007WANG L L, GAO A H, LIU W G, et al.. Angle resolution space laser scattering measurement system based on LabVIEW[J]. Optics & Optoelectronic Technology, 2018, 16(3):40-45.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201803007 [5] SANDMEIER S, MULLER CH, HOSGOOD B, et al..Physical mechanisms in hyperspectral BRDF data of grass and watercress[J]. Remote Sensing of Environment, 1998, 66(2):222-233. doi: 10.1016/S0034-4257(98)00060-1 [6] MARSCHNER S R, WESTIN SH, LAFORTUNE E P F, et al.. Image-based bidirectional reflectance distribution function measurement[J]. Applied Optics, 2000, 39(16):2592-6000. doi: 10.1364/AO.39.002592 [7] SCHAAF C B, GAO F, STRAHLER A H, et al.. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002, 83(1-2):135-148. doi: 10.1016/S0034-4257(02)00091-3 [8] BOUSQUET L, LACHÉRADE S, JACQUEMOUD S, et al.. Leaf BRDF measurements and model for specular and diffuse components differentiation[J]. Remote Sensing of Environment, 2005, 98(2-3):201-211. doi: 10.1016/j.rse.2005.07.005 [9] TAKASE K, TSUMURA N, NAKAGUCHI T, et al.. Measurement of bidirectional reflectance distribution function with a linear light source[J]. Optical Review, 2008, 15(4):187-195. doi: 10.1007/s10043-008-0030-z [10] WANG H Y, ZHANG W, DONG A T. Measurement and modeling of Bidirectional Reflectance Distribution Function(BRDF) on material surface[J]. Measurement, 2013, 46(9):3654-3661. doi: 10.1016/j.measurement.2013.07.008 [11] REN J, ZHAO J L. Measurement of a bidirectional reflectance distribution and system achievement based on a hemi-parabolic mirror[J]. Optics Letters, 2010, 35(9):1458-1460. doi: 10.1364/OL.35.001458 [12] LOUËT V L, ROUSSEAU B, LE CORRE S, et al.. Directional spectral reflectivity measurements of a carbon fibre reinforced composite up to 450℃[J]. International Journal of Heat and Mass Transfer, 2017, 112:882-890. doi: 10.1016/j.ijheatmasstransfer.2017.04.125 [13] 黄珣, 白璐, 吴振森.裸露起伏地表的BRDF模型[J].光学学报, 2016, 36(1):0129001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201601034HUANG X, BAI L, WU ZH S. BRDF model of bare surface over rugged terrain[J]. Acta Optica Sinica, 2016, 36(1):0129001.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201601034 [14] NUNES A L P, MACIEL A, CAVAZZOLA L T, et al..A laparoscopy-based method for BRDF estimation from in vivo human liver[J]. Medical Image Analysis, 2017, 35:620-632. doi: 10.1016/j.media.2016.09.005 [15] 王龙, 蔺超, 郑玉权.CO2探测仪星上定标铝漫反射板的制备与试验[J].中国光学, 2013, 6(4):591-599. //www.illord.com/CN/abstract/abstract9014.shtmlWANG L, LIN CH, ZHENG Y Q. Fabrication and experiment of aluminum diffuser for CO2 detector calibration on orbit[J]. Chinese Optics, 2013, 6(4):591-599.(in Chinese) //www.illord.com/CN/abstract/abstract9014.shtml [16] MCPHEDRAN R C, NICOROVICIAN A, MCKENZIEDR, et al.. Structural colours through photonic crystals[J]. Physica B:Condensed Matter, 2003, 338(1-4):182-185. doi: 10.1016/S0921-4526(03)00483-6 [17] 戴景民, 赵忠义, 李颖.可变温条件下材料表面的双向反射分布函数测量[J].应用光学, 2008, 29(3):321-325. doi: 10.3969/j.issn.1002-2082.2008.03.001DAI J M, ZHAO ZH Y, LI Y. BRDF measurement of material surface at variable temperatures[J]. Journal of Applied Optics, 2008, 29(3):321-325.(in Chinese) doi: 10.3969/j.issn.1002-2082.2008.03.001 [18] LIU Y L, YU K, LIU Z L, et al..Polarized BRDF measurement of steel E235B in the near-infrared region:based on a self-designed instrument with absolute measuring method[J]. Infrared Physics & Technology, 2018, 91:78-84. -