-
摘要: 为了满足原子发射光谱仪在紫外至近红外宽谱段范围内的高光谱分辨率快速检测需求,采用精密角位移平台直接驱动光栅,配合面阵探测器,实现高精度光谱分段快速扫描探测。但在扫描过程中,探测器像元波长增量与光栅转角呈非线性关系,且不同像元的波长增量不同,这对该光谱仪波长定标造成障碍。为校正光栅色散的非线性,基于光栅方程精确计算光栅转角与探测器首尾两端像元波长的映射关系,针对同一光栅转角,探测器其余像元波长利用首尾像元波长按照局部线性色散规律计算得到,从而完成全谱段光谱定标。依据定标所得转角与探测波段对应关系依次驱动光栅转动,实现宽谱段范围内的分段高精度光谱快速扫描探测。利用汞灯光源对该定标方法的波长检测精度进行检验,在200~800 nm的宽谱段范围内,波长准确度优于0.018 nm,波长重复性优于0.001 nm。Abstract: In order to achieve rapid and high spectral resolution detection in the broad band from ultraviolet to near infrared with an atomic emission spectrometer, an ultra-precision rotation stage is used to drive grating rotation to realize spectral segment-scan with high speed and high precision functioning together with an imaging CCD. However, during the scan, the wavelength increment of detector pixel changes nonlinearly with the angle of the grating, and the wavelength increments of different pixels are different, which becomes an obstacle to accurate spectral calibration. To compensate for the nonlinearity of the grating dispersion, the corresponding relationship between the wavelengths of the pixels at both ends of the detector and the rotational angles of the grating is calculated based on the grating equation while the wavelengths of the other pixels are calculated by using the wavelengths of the pixels at both ends with the linear dispersion law. Thus, with this methodology, the calibration of the full band of wavelength is implemented. After calibration, according to the corresponding relationship between the angle and the detection wavelength band, the grating is driven to rotate successively to realize the spectral segment-scan with high resolution and high speed in broad band. The wavelength accuracy and repeatability with this method are tested by using a mercury lamp. The results show that the wavelength accuracy is better than 0.018 nm and the wavelength repeatability is better than 0.001 nm in the wave band from 200 nm to 800 nm.
-
Key words:
- spectrometer /
- grating dispersion /
- spectral nonlinearity /
- wavelength calibration
-
表 1 550~600 nm波段定标结果
Table 1. Results of calibration at 550~600 nm
定标序号 光栅转角/(°) 起始像元波长/nm 终止像元波长/nm 像元分辨率/pm 1 61.608 6 545.720 3 552.749 3 6.87 2 61.185 4 552.756 1 559.743 6 6.83 3 60.762 9 559.750 4 566.696 1 6.79 4 60.341 1 566.702 8 573.606 5 6.75 5 59.92 573.613 2 580.474 5 6.71 6 59.499 6 580.481 2 587.299 8 6.66 7 59.079 9 587.306 4 594.082 6.62 8 58.660 9 594.088 7 600.821 6.58 表 2 波长精度测试结果
Table 2. Wavelength accuracy test results (nm)
标准波长 测试波长一 测试波长二 测试波长三 波长准确度 波长重复性 253.652 253.655 253.655 253.655 0.003 < 0.001 404.656 404.675 404.674 404.674 0.018 0.001 546.074 546.091 546.091 546.091 0.017 < 0.001 576.96 576.967 576.967 576.967 0.007 < 0.001 763.511 763.515 763.515 763.515 0.004 < 0.001 800.616 800.62 800.62 800.62 0.004 < 0.001 -
[1] 高升, 王巧华, 李庆旭, 等.基于近红外光谱的红提维生素C含量、糖度及总酸含量无损检测方法[J].分析化学, 2019, 47(6):941-949. http://d.old.wanfangdata.com.cn/Periodical/fxhx201906019GAO SH, WANG Q H, LI Q X, et al.. Non-destructive detection of vitamin C, sugar content and total acidity of red globe grape based on near-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6):941-949. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201906019 [2] 何秋菊, 王丽琴, 张亚旭.基于光谱分析技术的宣纸用铝盐施胶沉淀剂作用机理研究[J].光谱学与光谱分析, 2018, 38(2):418-423. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201802015HE Q J, WANG L Q, ZHANG Y X. Study of mechanism of aluminum sizing precipitant on Xuan paper based on spectral analysis[J]. Spectroscopy and Spectral Analysis, 2018, 38(2):418-423. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201802015 [3] 高颖, 戴连奎, 朱华东, 等.基于拉曼光谱的天然气主要组分定量分析[J].分析化学, 2019, 47(1):67-76. http://d.old.wanfangdata.com.cn/Periodical/fxhx201901009GAO Y, DAI L K, ZHU H D, et al.. Quantitative analysis of main components of natural gas based on raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1):67-76. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201901009 [4] 刘亚超, 李永玉, 彭彦昆, 等.近红外漫透射光补偿法无损快速检测大米直链淀粉[J].分析化学, 2019, 47(5):785-793. http://d.old.wanfangdata.com.cn/Periodical/fxhx201905021LIU Y CH, LI Y Y, PENG Y K, et al.. Non-destructive rapid detection of rice amylose content by near-infrared diffuse transmission optical compensation method[J]. Chinese Journal of Analytical Chemistry, 2019, 47(5):785-793.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201905021 [5] 李茂刚, 闫春华, 薛佳, 等.近红外光谱结合小波变换-随机森林法快速定量分析甲醇汽油中甲醇含量[J].分析化学, 2019, 47(12):1995-2003. http://d.old.wanfangdata.com.cn/Periodical/fxhx201912019LI M G, YAN CH H, XUE J, et al.. Rapid quantitative analysis of methanol content in methanol gasoline by near infrared spectroscopy coupled with wavelet transform-random forest[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12):1995-2003.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201912019 [6] 饶刚福, 黄林, 刘木华, 等.基于金宝搏188软件怎么用 诱导击穿光谱的微生物种类鉴别研究[J].分析化学, 2018, 46(7):1122-1128. http://d.old.wanfangdata.com.cn/Periodical/fxhx201807018RAO G F, HUANG L, LIU M H, et al.. Discrimination of microbe species by laser induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7):1122-1128. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201807018 [7] LOMBARDINI A, MYTSKANIUK V, SIVANKUTTY S, et al.. High-resolution multimodal flexible coherent raman endoscope[J]. Light:Science & Applications, 2018, 7:10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201804014 [8] 肖元芳, 王小华, 杭纬.中国原子光谱发展近况概述[J].光谱学与光谱分析, 2015, 35(9):2377-2387. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201509002XIAO Y F, WANG X H, HANG W. Recent development of atomic spectrometry in China[J]. Spectroscopy and Spectral Analysis, 2015, 35(9):2377-2387. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201509002 [9] 曾坤, 马源源, 郭庆中, 等.电感耦合等离子发射光谱法快速测定对苯二甲酰氯中氯化亚砜残留量[J].分析化学, 2019, 47(3):410-414. http://d.old.wanfangdata.com.cn/Periodical/fxhx201903011ZENG K, MA Y Y, GUO Q ZH, et al.. Determination of thionyl chloride residue in terephthaloyl chloride by inductively coupled plasma-optical emission spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3):24-29.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201903011 [10] 何家维, 何昕, 魏仲慧, 等.高灵敏度EMCCD导航相机的设计[J].光学 精密工程, 2018, 26(12):3019-3027. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201812019HE J W, HE X, WEI ZH H, et al.. Design of high-sensitivity EMCCD navigation camera[J]. Opt. Precision Eng., 2018, 26(12):3019-3027. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201812019 [11] 张子辉, 王淑荣, 黄煜, 等.宽波段单色仪多级谱高精度波长定标[J].光谱学与光谱分析, 2012, 32(10):2870-2874. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201210061ZHANG Z H, WANG SH R, HUANG Y, et al.. High-precision wavelength calibration of wide-band monochromator[J]. Spectroscopy and Spectral Analysis, 2012, 32(10):2870-2874. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201210061 [12] 施建华, 伏思华, 谢文科.光栅光谱仪光谱响应误差校正[J].中国光学, 2014, 7(3):483-490. doi: 10.3788/CO.20140703.0483SHI J H, FU S H, XIE W K. Error correction of spectral response characteristic of grating spectrometer[J]. Chinese Optics, 2014, 7(3):483-490. (in Chinese) doi: 10.3788/CO.20140703.0483 [13] 卢启鹏, 宋源, 龚学鹏, 等.极高分辨变包含角平面光栅单色器关键技术及检测方法研究[J].中国光学, 2016, 9(2):284-295. doi: 10.3788/CO.20160902.0284LU Q P, SONG Y, GONG X P, et al.. Key technologies and the performance measuring methods in variable included angle plane grating monochromator[J]. Chinese Optics, 2016, 9(2):284-295. (in Chinese) doi: 10.3788/CO.20160902.0284 [14] 刘怡轩, 颜昌翔, 李先锋, 等.分光测色仪中的光谱仪系统[J].光学 精密工程, 2015, 23(7):1965-1971. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201507020LIU Y X, YAN CH X, LI X F, et al.. Design of spectrometer in color measuring spectrophotometer[J]. Opt. Precision Eng., 2015, 23(7):1965-1971. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201507020 [15] 吴坤, 薛松, 卢启鹏, 等. SX-700单色器光栅正弦机构转角重复精度的模拟分析与测量[J].光学 精密工程, 2010, 18(1):45-51. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201001007WU K, XUE S, LU Q P, et al.. Simulation analysis and measurement of rotation angle repeatability for grating sine mechanism of SX-700 monochromator[J]. Opt. Precision Eng., 2010, 18(1):45-51. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201001007 [16] 曹佃生, 林冠宇, 杨小虎, 等.紫外双光栅光谱仪结构设计与波长精度分析[J].中国光学, 2018, 11(2):219-230. doi: 10.3788/CO.20181102.0219CAO D SH, LIN G Y, YANG X H, et al.. Structure design and wavelength accuracy analysis of ultraviolet double grating spectrometer[J]. Chinese Optics, 2018, 11(2):219-230. (in Chinese) doi: 10.3788/CO.20181102.0219 [17] 郁道银, 谈恒英.工程光学[M]. 2版.北京:机械工业出版社, 2006.YU D Y, TAN H Y.Engineering Optics[M]. 2nd ed. Beijing:China Machine Press, 2006. (in Chinese) [18] 陶琛, 李春生, 王宏霞, 等.基于数字微镜器件的原子荧光色散检测技术研究[J].分析化学, 2018, 46(12):1878-1885. http://d.old.wanfangdata.com.cn/Periodical/fxhx201812004TAO CH, LI CH SH, WANG H X, et al.. Research on dispersive detection technology based on digital micromirror device by atomic fluorescence spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12):1878-1885. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201812004 [19] 崔继承, 朱继伟, 崔弘, 等.基于元素灯的多通道光谱仪定标研究[J].金宝搏188软件怎么用 与红外, 2019, 49(5):584-588. http://d.old.wanfangdata.com.cn/Periodical/jgyhw201905012CUI J CH, ZHU J W, CUI H, et al.. Multi-channel spectrometer calibration based on elemental lamp[J]. Laser & Infrared, 2019, 49(5):584-588. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgyhw201905012 -