Citation: | LIU Zhi, JIANG Qing-fang, LIU Shu-tong, TIAN Shao-qian, ZHU Ling-yun, LIU Xian-zhu, YU Jia-xin, ZHAO Jian-tong, YAO Hai-feng, DONG Ke-yan. Research progress of space laser communication networking technology[J]. Chinese Optics. doi: 10.37188/CO.2023-0140 |
Laser communication utilizes light waves as the transmission medium. It offers many advantages, including high data rates, expansive bandwidth, compactness, robust interference resistance, and superior confidentiality. It has the critical capability to enable high-speed transmission and secure operation of space information networks. Prominent research institutions have committed to studying a series of challenges that need to be solved in the process of networking laser communication technology, including point-to-multipoint simultaneous laser communication, all-optical switching and forwarding of multi-channel signals within nodes, node dynamic random access, and network topology design. Numerous demonstration and verification experiments have been conducted, with a subset of these research results finding practical applications. Based on the analysis and discussion of space laser communication networking technology, this paper summarizes the development of laser communication networking technology both domestically and internationally, focusing on the application of laser communication networking technology in the fields of satellite constellations, satellite relays, and aviation networks. Furthermore, it presents a review of pertinent domestic research methodologies, experimental validations, and technical solutions. Finally, it predicts the development trend of laser communication networking technology and applications.
[1] |
姜会林, 安岩, 张雅琳, 等. 空间金宝搏188软件怎么用
通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报,2015,34(03):207-217.
JIANG H L, AN Y, ZHANG Y L, et al. Analysis of the status Quo, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT& C Technology, 2015, 34(03): 207-217.
|
[2] |
Hemmati, Hamid. Deep space optical communications[M]. John Wiley & Sons, 2006.
|
[3] |
Kaushal H, Kaddoum G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57-96.
|
[4] |
Hemmati H, Biswas A, Djordjevic I B, et al. Deep-space optical communications: Future perspectives and applications[J]. Proceedings of the IEEE, 2011, 99(11): 2020-2039. doi: 10.1109/JPROC.2011.2160609
|
[5] |
Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: The robot that won the DARPA Grand Challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. doi: 10.1002/rob.20147
|
[6] |
Sun L, Du Q. Physical layer security with its applications in 5G networks: A review[J]. China Communications, 2017, 14(12): 1-14. doi: 10.1109/CC.2017.8246483
|
[7] |
Radhakrishnan R, Edmonson W W, Afghah F, et al. Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2442-2473.
|
[8] |
Bilgi M, Yuksel M. Multi-element free-space-optical spherical structures with intermittent connectivity patterns[C]//IEEE INFOCOM Workshops 2008. IEEE, 2008: 1-4.
|
[9] |
Velazco J, Boyraz O. High data rate inter-satellite omnidirectional optical communicator[J]. 32nd Annual AIAA/USU Conference on Small Satellites, 2018, 91109(818): 354-2305.
|
[10] |
高世杰, 吴佳彬, 刘永凯, 等. 微小卫星金宝搏188软件怎么用
通信系统发展现状与趋势[J]. 中国光学,2020,13(06):1171-1181.
GAO S J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optic, 2020, 13(06): 1171-1181.
|
[11] |
Searcy P, Matsumori B A. Five advantages of managed optical communications array (MOCA) technology over other Lasercomm approaches[C]//Free-Space Laser Communications XXXIII. SPIE, 2021, 11678: 185-195.
|
[12] |
李全超. 基于万向节的机载高精度光电平台机构研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.000030.
LI C J. Research on mechanism of aerial high-precision optoelectronic platform based on universal joint[D]. Changchun: University of Chinese Academy of Sciences, 2022.000030.
|
[13] |
You Q, Chen D, Xiao X, et al. 10 Gb/s free space optical interconnect with broadcasting capability enabled by a silicon ntegrated optical phased array[J]. Chinese Optics Letters, 2021, 19(12): 120602. doi: 10.3788/COL202119.120602
|
[14] |
Ronglei H, Jianfeng S, Peipei H, et al. "Multi-dimensional and large-sized optical phased array for space laser communication, " Opt. Express 30, 5026-5037 (2022).
|
[15] |
李盈祉. 硅基光学相控阵芯片的研制及应用研究[D]. 吉林: 吉林大学. 2023.000269.
LI Z Y. Research and Application of Silicon-Based Optical Phased Array Chip[D]. Jilin: Jilin University, 2023.000269.
|
[16] |
许剑华, 汪相如, 黄子强, 等. 基于液晶光学相控阵的空间金宝搏188软件怎么用
通信PID跟踪方法[J]. 金宝搏188软件怎么用
与光电子学进展,2017,54(02):209-217.
XU J H, WANG X R, HUANG Z Q, et al. PID tracking method for space laser communication based on liquid crystal optical phased array[J]. Laser & Optoelectronics Progress, 2017, 54(02): 209-217.
|
[17] |
曹汉, 张士元, 穆全全, 等. 基于光控取向技术的液晶光阀系统[J]. 长春理工大学学报(自然科学版),2021,44(03):10-14.
CAO H, ZHANG S Y, MU Q Q, et al. Liquid Crystal Light Valve System Based on Photoalignment[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2021, 44(03): 10-14.
|
[18] |
Searcy P, Matsumori B A. MOCA technology and product update with analytical results[C]//Free-Space Laser Communications XXXIV. SPIE, 2022, 11993: 8-15.
|
[19] |
Presby H M, Tyson J A. Point-to-multipoint free-space wireless optical communication system: U. S. Patent 6, 445, 496[P]. 2002-9-3.
|
[20] |
Sparrold S W, Upton E L, Okorogu A O. Free space point-to-multipoint optical communication system and apparatus: U. S. Patent 6, 912, 360[P]. 2005-6-28.
|
[21] |
史蒂芬·G·兰伯特 自由空间光通信网络及用于中继节点得方法: 美国, CN 106341184 A[P]. 2017-01-18.
Stephen G. Lambert. Free Space Optical Communication Network and Method for Relaying Nodes: United States, CN 106341184 A[P]. January 18, 2017.
|
[22] |
M·D·马可夫斯基, G·D·科尔曼, W·J·小斯尔卡科, S·D·诺德. 用于自由空间光通信的金宝搏188软件怎么用
继电器: US, CN105284064A[P]. 2016-01-27.
M. D. Markovski, G. D. Coleman, W. J. Sierkaczko, S. D. Nod. Laser Relay for Free Space Optical Communication: US, CN105284064A[P]. January 27, 2016.
|
[23] |
江伦, 胡源, 王超, 等. 一点对多点同时空间金宝搏188软件怎么用
通信光学系统研究[J]. 光学学报,2016,36(05):37-43.
JIANG LU, HU Y, WANG C, et al. Optical system in one-point to multi-point simultaneous space laser communicatuins[J]. ACTA OPTICA SINICA, 2016, 36(05): 37-43. (in Chinese).
|
[24] |
姜会林, 胡源, 宋延嵩, 等. 空间金宝搏188软件怎么用
通信组网光端机技术研究[J]. 航天返回与遥感,2011,32(05):52-59. doi: 10.3969/j.issn.1009-8518.2011.05.013
JIANG H L, HU Y, SONG Y S, et al. Research on Space Laser Communication Network[J]. SPACECRAFT RECOVERY & REMOTE SENSING, 2011, 32(05): 52-59. doi: 10.3969/j.issn.1009-8518.2011.05.013
|
[25] |
姜会林, 胡源, 丁莹, 等. 空间金宝搏188软件怎么用
通信组网光学原理研究[J]. 光学学报,2012,32(10):56-60.
JIANG H L, HU Y, DING Y, et al. Optical principle research of space laser communication network[J]. ACTA OPTICA SINICA, 2012, 32(10): 56-60.
|
[26] |
郭鸿儒. 基于液晶光学相控阵的多用户捕跟方法研究[D]. 成都: 电子科技大学, 2020.
GOU H R. Multi-user acquisition tracking method based on Liquid Crystal Optical Phased Array[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
[27] |
姜会林, 江伦, 宋延嵩, 等. 一点对多点同时空间金宝搏188软件怎么用
通信光学跟瞄技术研究[J]. 中国金宝搏188软件怎么用
,2015,42(04):150-158.
JIANG H L, JIANG L, SONG U S, et al. Research of optical and APT technology in one-point to multi-point simultaneous space laser communication system[J]. CHINESE JOURNAL OF LASERS, 2015, 42(04): 150-158.
|
[28] |
Huang X, Suh Y, Duan T, et al. Simultaneous wavelength and format conversions based on the polarization-insensitive FWM in free-space optical communication network[J]. IEEE Photonics Journal, 2018, 11(1): 1-10.
|
[29] |
郏帅威, 汪伟, 谢小平, 等. 空间金宝搏188软件怎么用
通信网络中的全光数据合路技术研究[J]. 遥测遥控,2022,43(04):70-79. doi: 10.12347/j.ycyk.20211227001
JIA S W, WANG W, XIE X P, et al. Research on the all-optical data aggregation technology in the space laser communication network[J]. Journal of Telemetry, Tracking and Command, 2022, 43(04): 70-79. (in Chinese). doi: 10.12347/j.ycyk.20211227001
|
[30] |
陆红强, 汪伟, 黄新宁, 等. 下一代空间金宝搏188软件怎么用
骨干网络全光处理技术[J]. 遥测遥控,2022,43(06):56-63. doi: 10.12347/j.ycyk.20220318001
LU H Q, WANG W, HUANG X Y, et al. All-optical processing techniques for next-generation laser-based space backbone-networks[J]. Journal of Telemetry, Tracking and Command, 2022, 43(06): 56-63. (in Chinese). doi: 10.12347/j.ycyk.20220318001
|
[31] |
孟佳成, 谢宁波, 白兆峰, 等. 面向卫星互联网的星载光交换技术[J]. 天地一体化信息网络,2022,3(02):47-55.
MENG J C, XIE N B, BAI Z F, et al. Spaceborne Optical Switching Technology for Satellite Internet[J]. Space- Integrated- Ground Information Networks, 2022, 3(02): 47-55. (in Chinese).
|
[32] |
付强, 姜会林, 王晓曼, 等. 空间金宝搏188软件怎么用
通信研究现状及发展趋势[J]. 中国光学,2012,5(02):116-125.
FU Q, JIANG H L, WANG X M, et al. Research status and development trend of space laser communication[J]. Chinese Optics, 2012, 5(02): 116-125.
|
[33] |
中国科学院. (2023, October 8). 西安光机所星载光交换技术成功在轨验证. 中国科学院. Retrieved from https://www.cas.cn/syky/202310/t20231008_4973365.shtml.
Chinese Academy of Sciences. (2023, October 8). Xi'an Institute of Optics and Mechanics Successfully Validates On-Orbit Optical Switching Technology. Chinese Academy of Sciences. Retrieved from https://www.cas.cn/syky/202310/ t20231008_4973365.shtml.
|
[34] |
高铎瑞, 谢壮, 马榕, 等. 卫星金宝搏188软件怎么用
通信发展现状与趋势分析(特邀)[J]. 光子学报,2021,50(04):9-29.
GAO Z R, XIE Z, MA R, et al. Development Current Status and Trend Analysis of Satellite Laser Communication(Invited)[J]. ACTA PHOTONICA SINICA, 2021, 50(04): 9-29. (in Chinese).
|
[35] |
杨成武, 谌明, 刘向南, 等. 小卫星金宝搏188软件怎么用
通信终端技术现状与发展趋势[J]. 遥测遥控,2021,42(03):1-7.
YANG C W, CHEN M, LIU X N, et al. Current status and development trends of minisatellite laser communication terminal technology[J]. Journal of Telemetry, Tracking and Command, 2021, 42(03): 1-7. (in Chinese).
|
[36] |
Heine F, Sánchez-Tercero A, Martin-Pimentel P, et al. In orbit perfomance of tesat LCTs[C]. Free-Space Laser Communications XXXI. SPIE, 2019, 10910: 181-188.
|
[37] |
Haan H, Siemens C. Airborne optical communication terminal: First successful link from Tenerife to the GEO Alphasat[C]. Laser Communication and Propagation through the Atmosphere and Oceans VIII. SPIE, 2019, 11133: 43-48.
|
[38] |
Rose T S, Rowen D W, LaLumondiere S, et al. Optical communications downlink from a 1.5 U CubeSat: OCSD program[C]. International Conference on Space Optics—ICSO 2018. SPIE, 2019, 11180: 201-212.
|
[39] |
郑运强, 刘欢, 孟佳成, 等. 空基金宝搏188软件怎么用
通信研究进展和趋势以及关键技术[J]. 红外与金宝搏188软件怎么用
工程,2022,51(06):397-409.
ZHENG Y Q, LIU H, MENG J C, et al. Development status, Trend and key Technologies of Air-based Laser Communication[J]. Infrared and Laser Engineering, 2022, 51(06): 397-409. (in Chinese).
|
[40] |
Pulliam, Jeff et al. “TSAT network architecture. ” MILCOM 2008 - 2008 IEEE Military Communications Conference (2008): 1-7.
|
[41] |
Zhi H, Jiang X, Wang J. Multicolour photometry of LEO mega-constellations Starlink and OneWeb[J]. Monthly Notices of the Royal Astronomical Society, 2024, 530(4): 5006-5015. doi: 10.1093/mnras/stae693
|
[42] |
Rainbow, Jason. (2023, May 20). SpaceX launches OneWeb Gen 2 technology demonstrator. SpaceNews. Retrieved from https://spacenews.com/spacex-launches-oneweb-gen-2-technology-demonstrator/.
|
[43] |
Hauschildt H, Elia C, Jones A, et al. ESAs ScyLight programme: Activities and status of the high throughput Optical Network" HydRON"[C]//International Conference on Space Optics—ICSO 2018. SPIE, 2019, 11180: 174-181.
|
[44] |
Vasko C A, Arapoglou P D, Acar G, et al. Optical High-Speed Data Network in Space-An Update on HydRON's System Concept[C]//2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS). IEEE, 2022: 7-13.
|
[45] |
SDA. Space Development Agency Next-Gencration Space Architocture Request for Information (SDA-SN-19-0001)[R]. Washington: Defense Pentagon, 2019.
|
[46] |
许连杰, 刘亮亮, 庞鸿锋, 等. 美国“扩散型作战人员太空架构”系统建设进展及关键技术分析[J]. 中国航天,2023(09):47-54.
XU L J, LIU L L, PANG H F, et al. Progress and key technology analysis of the construction of the "proliferation warcrew space architecture" system in the United States[J]. Aerospace China, 2023(09): 47-54.
|
[47] |
DARPA. (2022, August). DARPA’s Mandrake 2 satellites: communicating at the speed of light. Retrieved from https:// breakingdefense.com/2022/08/darpas-mandrake-2-satellites-communicating-at-the-speed-of-light/.
|
[48] |
SDA. (2023, January 23). SDA Layered Network of Military Satellites Now Known as “Proliferated Warfighter Space Architecture”. Retrieved from https://www.sda.mil/sda-layered-network-of-military-satellites-now-known-as-proliferated-warfighter-space-architecture/.
|
[49] |
United States Government. (2023, April 2). Space Development Agency Successfully Launches Tranche 0 Satellites. U. S. Department of Defense - Releases. Retrieved from https: //www. defense. gov/News/Releases/Release/Article/ 3348974/ space-development-agency-successfully-launches-tranche-0-satellites/.
|
[50] |
U. S. Department of Defense. (2022, February 28). Space Development Agency Makes Awards for 126 Satellites to Build Tranche 1 Transport Layer [Press release]. Retrieved from https://www.defense.gov/News/Releases/Release/Article/2948229/space-development-agency-makes-awards-for-126-satellites-to-build-tranche-1-tra/.
|
[51] |
Sandra Erwin. (2023, May 12). Space Development Agency issues draft solicitation for 100 satellites. Retrieved from https://spacenews.com/space-development-agency-issues-draft-solicitation-for-100-satellites/.
|
[52] |
Sandra Erwin. (2022, August 10) . DARPA selects companies for inter-satellite laser communications project. Retrieved from https://spacenews.com/darpa-selects-companies-for-inter-satellite-laser-communications-project/.
|
[53] |
科技日报. (2023, January 16). 基于金宝搏188软件怎么用
通信互联 遥感小卫星星座建成. Retrieved from www. xinhuanet. com/tech/20230116/46f74613b1e94a80af9091ded3ac8cf6/c. html?share_token=0447b499-b3da-43f5-9934-a6841ac29c52.
Science and Technology Daily. (2023, January 16). Remote Sensing Small Satellite Constellation Established Based on Laser Communication Interconnection. Retrieved from www. xinhuanet. com/tech/20230116/46f74613b1e94a80af9091ded3ac8cf6/ c. html? share_token=0447b499-b3da-43f5-9934-a6841ac29c52.
|
[54] |
Laser Light Communications. (2016, October 17). HALO Communications System. Retrieved from https://proceedings.kaconf.com/papers/2016/clq/2_3.pdf.
|
[55] |
Tereza Pultarova. (2025, January 30) Starlink satellites: Facts, tracking and impact on astronomy. Retrieved from https://www.space.com/spacex-starlink-satellites.html.
|
[56] |
Aizaz C. (2021, February). Laser Inter-Satellite Links in a Starlink Constellation. Retrieved from https://www.researchgate.net/publication/349641367.
|
[57] |
Maya P. (2024, February 5). Starlink’s Inter-Satellite Laser Links Are Setting New Record With 42 Million GB Per Day. Retrieved from https://hackaday.com/2024/02/05/starlinks-inter-satellite-laser-links-are-setting-new-record-with-42-million-gb-per-day/.
|
[58] |
Mark Rigolle. (2016, June). LeoSat—A New Satellite Paradigm. Retrieved from http://www.satmagazine.com/story.php?number=1365559905.
|
[59] |
Jewett, R. (2021, August 26). Mynaric to Roll Out Next-Generation Optical Link Terminal. Via Satellite. Retrieved from https://www.satellitetoday.com/innovation/2021/08/26/mynaric-to-roll-out-next-generation-optical-link-terminal/.
|
[60] |
Jewett, R. (2023, June 22). Mynaric to Supply Raytheon With Optical Terminals for SDA Program. Via Satellite. Retrieved from https://www.satellitetoday.com/government-military/2023/06/22/mynaric-to-supply-raytheon-with-optical-terminals-for-sda-program/.
|
[61] |
Erwin, Sandra. (2024, April 13). Boeing unveils WGS-11 design with new military payload. SpaceNews. Retrieved from https://spacenews.com/boeing-unveils-wgs-11-design-with-new-military-payload/.
|
[62] |
Heine F, Martin-Pimentel P, Kaempfner H, et al. Alphasat and Sentinel 1A, the first 100 links[C]//2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS). IEEE, 2015: 1-4.
|
[63] |
Beth R. (2021, December 7). Laser Communications Relay Demonstration (LCRD) Overview. Retrieved from https://www.nasa.gov/directorates/stmd/tech-demo-missions-program/laser-communications-relay-demonstration-lcrd-overview/.
|
[64] |
董全睿, 陈涛, 高世杰, 等. 星载金宝搏188软件怎么用
通信技术研究进展[J]. 中国光学,2019,12(06):1260-1270. doi: 10.3788/co.20191206.1260
DONG Q R, CHEN T, GAO S J, et al. Progress of research on satellite-borne laser communication technology[J]. Chinese Optic, 2019, 12(06): 1260-1270. doi: 10.3788/co.20191206.1260
|
[65] |
Israel D J, Edwards B L, Staren J W. Laser Communications Relay Demonstration (LCRD) update and the path towards optical relay operations[C]. 2017 IEEE Aerospace Conference. IEEE, 2017: 1-6.
|
[66] |
Gillmer S R, Smeaton C V, Burnside J W, et al. Demonstration of a modular, scalable, laser communication terminal for human spaceflight missions[C]//Optomechanics and Optical Alignment. SPIE, 2021, 11816: 120-125.
|
[67] |
Seas A, Robinson B, Shih T, et al. Optical communications systems for NASA's human space flight missions[C]//International Conference on Space Optics—ICSO 2018. SPIE, 2019, 11180: 182-191.
|
[68] |
Israel D J, Shaw H. Next-generation NASA Earth-orbiting relay satellites: Fusing optical and microwave communications[C]//2018 IEEE Aerospace Conference. IEEE, 2018: 1-7.
|
[69] |
Park E A, Cornwell D, Israel D. NASA's next generation≥ 100 Gbps optical communications relay[C]//2019 IEEE Aerospace Conference. IEEE, 2019: 1-9.
|
[70] |
Laux O, Poncet D, Mager R, et al. Status of the European data relay satellite system[C]//2012 International Conference on Space Optical Systems and Applications (ICSOS). 2012: 9-12.
|
[71] |
Perdigues J M, Sodnik Z, Hauschildt H, et al. The ESA's optical ground station for the EDRS-A LCT in-orbit test campaign: upgrades and test results[C]//International Conference on Space Optics—ICSO 2016. SPIE, 2017, 10562: 833-841.
|
[72] |
Jeffrey H. (2020, July 17). Airbus to Commence Service on EDRS-C Satellite. Retrieved from https://www.satellitetoday.com/launch/2020/07/17/airbus-to-commence-service-on-edrs-c-satellite/.
|
[73] |
Jewett, R. (2020, November 23). Inmarsat, Addvalue Debut Inter-Satellite Data Relay System Linking LEO and GEO. Via Satellite. Retrieved from https://www.satellitetoday.com/mobility/2020/11/23/ inmarsat-addvalue-debut-inter-satellite-data- relay-system-linking-leo-and-geo/.
|
[74] |
Andrews L C, Phillips R L, Bagley Z C, et al. Hybrid Optical/Radio Frequency (RF) Communications[J]. Advanced Free Space Optics (FSO): A Systems Approach, 2014, 186.
|
[75] |
Young D W, Hurt H H, Sluz J E, et al. Development and demonstration of laser communications systems[J]. Johns Hopkins APL Technical Digest, 2015, 33(2): 122-136.
|
[76] |
Ponseelan A J, VB D M. A Study on Google Project Loon-Opportunities and Challenges[J]. 2020.
|
[77] |
Casey N. (2016, December 17). Facebook’s drone test flight ended with part of the wing snapping off. Retrieved from https://www.theverge.com/2016/12/16/13983868/facebook-drone-crash-aquila-wing-failure-ntsb-report.
|
[78] |
Wu S, Li S, Lin Y, et al. Performance analysis of hybrid FSO/RF transmission assisted airborne free-space optical communication system[J]. Journal of Communications and Information Networks, 2022, 7(3): 252-258. doi: 10.23919/JCIN.2022.9906939
|
[79] |
赵尚宏, 魏军、李勇军, 等. 航空光通信与网络技术[M]. 上海: 上海科学出版社, 2020.
Zhao S H , Jun W, Li, Y et al. Aviation Optical Communication and Networking Technology[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2020.
|
[80] |
Shekhar S, Bogaerts W, Chrostowski L, et al. Roadmapping the next generation of silicon photonics[J]. Nature Communications, 2024, 15(1): 751. doi: 10.1038/s41467-024-44750-0
|
[81] |
Sandra E. (2021, December 20). Mynaric selected by DARPA to design next-generation optical terminals. Retrieved from https://spacenews.com/mynaric-selected-by-darpa-to-design-next-generation-optical-terminals/.
|